Method for attaching multiple light sources to an...

Optical waveguides – With optical coupler – Particular coupling structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S088000, C385S147000

Reexamination Certificate

active

06807346

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to method for attaching a plurality of light sources to a single optoelectronic module such as an optical integrated circuit.
BACKGROUND OF THE INVENTION
Current techniques for coupling a light source to an optical device or component involves the active alignment and attachment of passive optical devices, such as an optical fiber and/or lens, to a light source that remains stationary while the light source is powered to produce a light signal. Therefore, in a conventional assembly sequence, the light source is attached and connected to a substrate with a heat sink before the other parts of a component are introduced. The other parts of the component are then manipulated while the light source is activated to optimize the coupling of light between the various components. This assembly sequence technique is adequate for components that use a single light source. Where a plurality of light sources are to be coupled to a component, the conventional assembly sequence can only be performed with a lensed optical train where each lens train may have to be manipulated for light coupling optimization.
It is desirable to provide a technique for coupling a plurality of radiation or light sources to a single module or component without the manipulation of lens trains.
SUMMARY OF THE INVENTION
The present invention is directed to a technique for attaching a plurality of radiation sources to a single optoelectronic module such as an optical integrated circuit.
From a first method aspect, the present invention is a method of forming an assembly comprising a plurality of n radiation sources which each require heat dissipating means during normal operation thereof, a module comprising a plurality of n radiation input ports and an output port. Initially the module is attached on a carrier member. A first radiation source is turned on and operated at a substantially lower power level than is used during normal operation thereof such that the first radiation source is not caused to fail even without the heat dissipating means being coupled thereto. The first radiation source is positioned relative to a first one of the n radiation input ports such that radiation emitted by the first radiation source is incident on the first radiation port. The first radiation source is repositioned while it is powered with the substantially lower power than is used during normal operation until a signal emitted at the output port of the module has a maximum level. The first radiation source is then attached to the carrier member. This procedure is then repeated for each of the remaining n−1 plurality of radiation sources.
From a second method aspect, the present invention is a method of coupling a plurality of n light sources to an optoelectronic module comprising a plurality of n optical input ports and an optical output port. Initially the optoelectronic module is attached to a carrier member. A light detector is coupled to the optical output port of the module. Each of the plurality of n light sources is sequentially moved adjacent a separate one of the plurality of n optical input ports while pulsing the light source being moved with a low power signal sufficient to prevent failure of the light source. Each of the light sources is then attached adjacent the separate one of the n optical input ports when a maximum light intensity signal propagating through the optoelectronic module from the light source is detected by the light detector. Heat dissipating means, if needed, is attached to a base of the carrier member which is capable of removing sufficient heat from the n light sources and the optoelectronic module to prevent failure during normal operation thereof.
From a third method aspect, the present invention is a method of coupling a plurality of n light sources to an optoelectronic module comprising a plurality of n optical input ports and an optical output port. Initially, the optoelectronic module is attached to a carrier member. A light detector is coupled to the optical output port of the module. A first one of the plurality of light sources is moved adjacent a separate one of the plurality of n optical input ports while pulsing the light source with a low power signal sufficient to prevent failure of the light source. The first one of the light sources is attached adjacent the separate one of the n optical input ports when a maximum light signal propagating through the optoelectronic module from the light source is detected by the light detector. Then the same procedure is repeated for each of remaining n−1 plurality of light sources. Heat dissipating means, if needed, is attached to a base of the carrier member capable of removing sufficient heat from the n light sources and the light detector to prevent failure thereof during normal operation thereof.
From a fourth method aspect the present invention is a method of forming an assembly comprising n radiation sources which each require heat dissipating means during normal operation, where n is a number greater than one, and a radiation sensitive detector having m inputs, where m is a number greater than one, and having an output port. The radiation detector is attached to a carrier member. A first one of the n radiation sources is turned on and it is operating at a substantially lower power than is used during normal operation such that same does not overheat even without the heat dissipating means being coupled thereto. The first radiation source is positioned relative to a first one of the m inputs of the detector such that radiation emitted by the first radiation source is incident on the first input of the detector. The first radiation source is repositioned while it is powered with the substantially lower power than is used during normal operation until a signal emitted at the output of the detector reaches a maximum level. The first radiation source is then fixedly attached to the carrier member. The above steps for the first radiation source is repeated for a second one of the n radiation sources. The above steps for the first radiation source is again repeated for any additional radiation sources. Heat dissipating means, if needed, is then attached to a base of the carrier member capable of removing sufficient heat from the n radiation sources and the radiation detector during normal operation thereof.
From a fifth method aspect the present invention is a method of forming an assembly comprising n chips, where n is greater than 1, with at least one of the n chips having formed therein two radiation sources which requires heat dissipating means during normal operation thereof, with each of the remaining n−1 chips having formed therein at least one radiation source which requires heat dissipating means during normal operation thereof, and a radiation detector comprising a plurality of radiation input ports and an output port. The radiating detector is attached to a carrier member. The two radiation sources of one of the n chips are turned on and operated at a substantially lower power level than is used during normal operation thereof such that the two radiation sources are not caused to fail even without heat dissipating means being coupled thereto. The one of the n chips is positioned relative to a first set of the radiation input ports such that radiation emitted by the two radiation sources of the one chip is incident on separate ones of the radiation inputs ports. The one chip is then repositioned while the two radiation sources thereof are powered with the substantially lower power than is used during normal operation until a signal emitted at the output port of the module has a maximum level. The one chip is attached to the carrier member. The above steps are then repeated for each of the remaining n−1 chips.
The invention will be better understood from the following more detailed description taken with the accompanying drawings and claims.


REFERENCES:
patent: 5539848 (1996-07-01), Galloway
patent: 5570444 (1996-10-01), Janssen
patent: 5625734 (1997-04-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for attaching multiple light sources to an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for attaching multiple light sources to an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for attaching multiple light sources to an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3328653

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.