Metal working – Method of mechanical manufacture – Impeller making
Reexamination Certificate
2001-05-08
2003-05-13
Rosenbaum, I Cuda (Department: 3726)
Metal working
Method of mechanical manufacture
Impeller making
C029S889700, C029S889720, C029S402090, C029S402160, C427S353000
Reexamination Certificate
active
06560870
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to components of the hot section of gas turbine engines, and in particular, to a diffusion aluminiding process for depositing an aluminide coating onto a selective area of a turbine component.
BACKGROUND OF THE INVENTION
In gas turbine engines, for example, aircraft engines, air is drawn into the front of the engine, compressed by a shaft-mounted rotary compressor, and mixed with fuel. The mixture is burned, and the hot exhaust gases are passed through a turbine mounted on a shaft. The flow of gas turns the turbine, which turns the shaft and drives the compressor. The hot exhaust gases flow from the back of the engine, providing thrust that propels the aircraft forward.
During operation of gas turbine engines, the metal parts of the engine, are in contact with hot, corrosive gases. The metal parts require particular attention to protect them from these combustion gases. These metallic parts include blades and vanes used to direct the flow of the hot gases, as well as other components such as shrouds and combustors.
In order to protect the metallic parts from the hot, oxidative and corrosive effects of the combustion gases, environmental coatings typically are applied to the metallic parts. These environmental coats may be produced by holding the part to be coated at temperature in an atmosphere rich in a certain element or elements, often aluminum. These elements diffuse into the surface of the part to form a diffusion coating, a process called chemical vapor deposition (CVD). In one form, the environmental coat is made of a diffusion nickel aluminide or platinum aluminide. Diffusing Al into the substrate has also proven effective against high temperature oxidation in addition to improving adherence of the ceramic TBC. The CVD bond coat surface forms an aluminum oxide scale during exposure to oxygen containing atmospheres at elevated temperatures, providing increased resistance to further high temperature oxidation. Other well-known methods are utilized to form diffusion aluminide coatings. While not meant to be inclusive, some other of these methods include “over the pack” aluminizing, pack aluminizing, flash electroplating of nickel and platinum onto a substrate followed by application of aluminum by one of these well-known methods. Frequently, these environmental layers also serve as a bond coat in a thermal barrier system that utilizes a thermal barrier coating over the diffusion aluminide layer, thereby impeding the transfer of heat from the hot exhaust gases to the parts by providing an insulating layer and allowing the exhaust gases to be hotter than would otherwise be possible.
Chipping of the protective coating sometimes occurs during the life of the part. This chipping damage may be caused during machining of the aluminide coated component, by poor handling of the component during subsequent manufacturing processes, during routine maintenance or through the normal operational environment of the turbine component. When repairing chipping damage, it is not cost effective to remove the remaining undamaged coating and re-coat the entire turbine component. Instead, localized repair of only the damaged surface is attempted. Current practice for localized repair of aluminide coating on damaged or selective areas of the turbine component is exemplified by, for example, U.S. Pat. Nos. 5,334,417 and 6,045,863, involving slurry or tape processes.
For example, in a proprietary commercial form presently used by the Assignee of the present invention, a self-adhesive halide activated or non-activated iron aluminum alloy containing about 55-57 wt. % aluminum tape or, alternatively, a cobalt aluminum alloy containing about 50-60 wt. % aluminum tape is placed on the selective area to be coated. The taped component is placed inside a metal coating box or can and packed in an inert aluminide oxide powder to hold the tape in place and mask the machined area during the coating operation. The coating box or can is heated to between about 1800° F. and about 2000° F. under an inert (reducing) atmosphere for a time sufficient to permit diffusion of aluminum to achieve the desired aluminide coating thickness, typically about three to eight hours just to accomplish the soak at the temperature to achieve a coating thickness of about 1 to about 3 mils. One cycle can take from 14-32 hours.
However, built up stress from the thermal expansion mismatch between the engine component and the inert aluminum oxide powder creates warpage or distortion of the selectively coated engine component, making the component unusable in the engine. The unusable component must be discarded at great cost.
What is needed are improved methods to apply diffusion aluminide coating to a selective area of an engine component, which results in little or no warpage or distortion of the component, hence, less waste. The present invention fulfills this need, and further provides related advantages.
SUMMARY OF THE INVENTION
In one form, the present invention provides both an improved method for applying diffusion aluminide coating on a selective area of a turbine engine component and the coatings produced by that method, utilizing a quartz infrared lamp to heat only the localized area of the component to be coated, rather than the complete part.
Either halide activated or non-activated aluminum source tape is applied on the area to be coated and is held in place during coating using a high temperature dimensionally stable tape holder. The quartz infrared lamp is used to heat only the selective area to a coating temperature of about 1800° F. to about 2000° F. under an inert atmosphere for about 3 to about 8 hours to achieve the desired aluminide coating thickness. While the soak time remains the same to achieve a desired coating thickness, the overall cycle time is reduced to 6 to 12 hours. The desired thickness of the coating will vary with time, with longer times providing thicker coatings.
Due to the localized heating and application, aluminum vapor generated from the tape will only deposit aluminide coating on the taped area. As a result, no masking of the component machined surface area adjacent to the regions undergoing coating is required.
Optionally, a thermal barrier coating (TBC) such as yttrium-stabilized zirconia (YSZ) may be deposited over the repaired aluminide coating of the present invention when the diffusion aluminide is part of a thermal barrier coating system.
One advantage of the present invention is that the coating produced by this invention demonstrates a distortion-free, aluminided engine component. By avoiding the significant warpage caused by current practice of heating the entire component in a packed coating box, there is little to no resultant waste from scrapped parts, with significant cost savings.
Another advantage of the present invention is that there is a 65% reduction in heat up cycle time and a 75% reduction in cool down cycle time, with resultant cost savings. Current practice requires long heat up and cool down cycles of generally 5-12 hours per each cycle, due to the heating up and cooling down of a large mass comprised of aluminum oxide powder plus the entire component.
Still another advantage of the present invention is a significant labor cost reduction. Masking of machined surfaces with aluminum oxide powder is no longer required due to the localized heating and application of coating material utilized by the present invention.
Because masking of the component is not necessary, yet another advantage of the present invention is that the process is more environmentally friendly than current practice since aluminum oxide powder waste is reduced.
Continuing and often interrelated improvements in processes and materials, such as the improvements of the present invention, can provide cost reductions and major increases in the performance of devices such as aircraft gas turbine engines.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment taken in
Das Nripendra Nath
Gmerek, Jr. Walter Michael
Heidorn Raymond William
Jablonka David Andrew
Cuda Rosenbaum I
General Electric Company
McNees Wallace & Nurick
VG Ramaswamy
LandOfFree
Method for applying diffusion aluminide coating on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for applying diffusion aluminide coating on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for applying diffusion aluminide coating on a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3071872