Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1999-04-14
2001-04-24
Gray, Linda L. (Department: 1734)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S252000, C156S268000, C156S270000, C156S516000, C156S547000, C156S517000, C156S555000, C493S060000, C493S064000, C493S132000, C493S160000, C493S063000, C493S097000, C493S110000, C493S147000, C493S150000, C229S185100, C229S800000
Reexamination Certificate
active
06221192
ABSTRACT:
BACKGROUND OF THE INVENTION
In some processes for forming carton blanks, apparatus is used to laminate together a continuous strip of a relatively rigid material and a continuous strip of a relatively flexible material. Under some operating conditions, there is a tendency for the laminated materials to curl. The operating conditions relate to the type of adhesive being used and the manner in which the continuous strip of a relatively rigid material and the continuous strip of a relatively flexible material are fed into the nip between the laminating rolls. In the curled product, an arcuate shape extending in the machine direction is formed between the ends of the carton blank wherein the inner surface of the arcuate shape comprises the relatively flexible material. Under these conditions, the adhesive being used is a liquid adhesive that is tacky at room temperatures which under desirable operating conditions is between 60° F. and 80° F. but could be as high as 110° F. However, as the temperature approaches 110° F., the liquid adhesive does not perform as well. Also, under these conditions, the continuous strip of a relatively rigid material and the continuous strip of a relatively flexible material are fed from opposite sides of a plane tangent to the laminating rolls at the nip therebetween or at least one of the continuous strips is in the plane tangent to the laminating rolls at the nip therebetween. In most instances, the amount of curl is slight but can interfere with further processing of the carton blanks. Many types of liquid adhesives were tried in an effort to eliminate the curl. Therefore, it is desirable to eliminate or at least to minimize the amount of curl.
In conventional apparatus for forming carton blanks, a laminate of desired materials is made and then appropriate cut lines and fold lines are formed in the laminate. Also, the individual carton blanks may be formed at the same time or formed in a separate operation.
In U.S. Pat. No. 3,942,708 there is disclosed a process wherein individual carton blanks of a relatively rigid material are fed onto a moving continuous strip of a relatively flexible material. It is stated that an adhesive material is applied either on the continuous strip of a relatively flexible material or on the individual carton blanks. It is further stated that the individual carton blanks are formed in a separate operation. There is no illustration or explanation of any apparatus for feeding the individual punched carton blanks onto the continuous strip of a relatively flexible material. After being deposited on the continuous strip of a relatively flexible material, each individual carton blank and the continuous strip of a relatively flexible material are pressed together by suitable apparatus.
BRIEF DESCRIPTION OF THE INVENTION
This invention provides apparatus for laminating together a continuous strip of a relatively rigid material and a continuous strip of a relatively flexible, fluid impervious material so as to prevent or minimize the curling of the lamination. In some instances, the laminate includes spaced apart relatively narrow continuous strips of a relatively flexible material. Also, the invention provides for the formation of the cut and fold lines in the continuous strip of a relatively rigid material prior to the lamination thereof to the continuous strip of a relatively flexible, fluid impervious material.
In one preferred embodiment of the invention, the apparatus comprises conventional laminating rolls each having a diameter between about 8 and 12 inches and preferably about 10 inches and comprising a first roll mounted at a fixed location for rotational movement and a second rotatable roll mounted adjacent to the first roll so as to form a nip therebetween and for movement toward or away from the first roll and urged by gravity or mechanical means toward the first roll. Drive means are provided for rotating at least one or both of the first and second rolls. At least a first guide apparatus is located to guide a continuous strip of a relatively rigid material into the nip. At least a second guide apparatus is located to guide a continuous strip of a relatively flexible material, preferably a fluid impervious material, into the nip so that the continuous strip of a relatively rigid material and the continuous strip of a relatively flexible, fluid impervious material have facing surfaces. While the guide apparatus is illustrated as rolls, it is understood that it can be of other configurations. An adhesive coating comprising a liquid adhesive, that is tacky at temperatures between about 60° F. and 110° F., is applied to at least portions of at least one of the facing surfaces. The portions of the adhesive coating are located so that a plurality of spaced apart strips of the relatively rigid material and the relatively flexible fluid impervious material are not secured together. Preferably, the portions of the adhesive coating are on the facing surface of the continuous strip of a relatively flexible fluid impervious material. The at least a first guide apparatus and the at least a second guide apparatus are located so that the continuous strip of a relatively rigid material and the continuous strip of a relatively flexible material enter the nip only from one side of a plane tangent to the first roll and the second roll at the nip to secure at least portions of the continuous strips together. The first and second guide apparatus are located so that the continuous strip of a relatively rigid material contacts the first roll before the continuous strip of a relatively flexible fluid impervious material contacts the continuous strip of a relatively rigid material. Alternatively, the first and second guide apparatus may be located so that the continuous strip of a relatively rigid material contacts the second roll before the continuous strip of a relatively flexible fluid impervious material contacts the continuous strip of a relatively rigid material. Preferably, the second guide apparatus is located so that the portion of the continuous strip of a relatively flexible fluid impervious material contacts the portion of the continuous strip of a relatively rigid material at a location spaced about one inch from the nip between the laminating rolls.
In another preferred embodiment of the invention, rotary cutting and creasing rolls are located before the first and second rolls for forming cut lines and fold lines in the continuous strip of a relatively rigid material. The rotary cutting and creasing rolls are driven at substantially the same rate of speed as the first and second laminating rolls. While the rotary cutting and creasing rolls exert a pulling force on the continuous strip of a relatively rigid material, the primary pulling force is exerted by the first and second laminating rolls. Some cut lines, preferably at least one cut line, necessary for the formation of individual carton blanks are not made in the continuous strip of a relatively rigid material to retain the continuity of the continuous strip of a relatively rigid material after it leaves the cutting and creasing apparatus so that the continuous strip of a relatively rigid material having the some cut lines formed therein may be pulled through the laminating rolls. If the continuous strips have a sufficient extent in a cross-machine direction so that two carton blanks are formed at the same time, the continuous strip of a relatively rigid material is preferably appropriately cut by the rotary cutting and creasing rolls and the laminated materials are passed between a first pair of cutting rolls which cut the continuous strip of a relatively flexible fluid impervious material located between the individual carton blanks to be formed. The laminated materials then pass through a second pair of cutting rolls where the cut lines not previously made are made to form a plurality of at least two individual carton blanks which are then deposited on a first moving conveyor and further processed as described below.
In another embodiment of the invention, at least a
Coors Brewing Company
Gray Linda L.
Kaufman, Esq. Nellie C.
Klaas, Law, O'Meara & Malkin, P.C.
O'Meara, Esq. William P.
LandOfFree
Method for and apparatus for use in forming carton blanks does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for and apparatus for use in forming carton blanks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for and apparatus for use in forming carton blanks will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2489726