Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1999-04-22
2001-09-25
Prebilic, Paul B. (Department: 3738)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C264S430000, C264S446000, C623S023630, C008S094110
Reexamination Certificate
active
06294041
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to an osteoimplant for use in the repair, replacement and/or augmentation of various portions of animal or human skeletal systems and to a method for manufacturing the osteoimplant. More particularly, this invention relates to an osteoimplant made up of a solid aggregate of bone-derived elements that are bonded to each other through chemical linkages formed between their surface-exposed collagen.
2. Description of the Related Art
The use of autograft bone, allograft bone or xenograft bone is well known in both human and veterinary medicine. See Stevenson et al.,
Clinical Orthopedics and Related Research
, 323, pp. 66-74 (1996). In particular, transplanted bone is known to provide support, promote healing, fill bony cavities, separate bony elements such as vertebral bodies, promote fusion and stabilize the sites of fractures. More recently, processed bone has been developed into shapes for use in new surgical applications, or as new materials for implants that were historically made of non-biologically derived materials.
U.S. Pat. No. 4,678,470 describes a non-layered bone grafting material produced from bone by a process which includes tanning with glutaraldehyde. The bone may be pulverized, used as a large block or machined into a precise shape. The tanning stabilizes the material and also renders it non-antigenic. The bone material may also be demineralized.
Collagen is a naturally occurring structural biomaterial and is a component of connective tissues, including bone, in all vertebrate species. Native collagen is a glycine-rich chain of amino acids arranged in a triple helix and can be crosslinked by a variety of procedures.
Tissue transglutaminase is described as being effective at increasing adhesive strength at a cartilage-cartilage interface. See Jurgensen, K., et al.,
The Journal of Bone and Joint Surgery
, 79-A (2), 185-193 (1997).
U.S. Pat. No. 5,507,813 describes a surgically implantable sheet formed from elongate bone particles, optionally demineralized, containing biocompatible ingredients, adhesives, fillers, plasticizers etc.
U.S. Pat. No. 4,932,973 discloses an artificial organic bone matrix with holes or perforations extending into the organic bone matrix. The holes or perforations are indicated to be centers of cartilage and bone induction following implantation of the bone matrix.
U.S. Pat. No. 4,394,370 discloses a one-piece sponge-like bone graft material fabricated from fully demineralized bone powder or micro particulate bone, and reconstituted collagen. The sponge-like graft is optionally crosslinked with glutaraldehyde.
Another one-piece porous implant is described in U.S. Pat. No. 5,683,459. The implant is made up of a biodegradable polymeric macrostructure, which is structured as an interconnecting open cell meshwork, and a biodegradable polymeric microstructure composed of chemotactic ground substances such as hyaluronic acid.
SUMMARY OF THE INVENTION
The present invention provides an osteoimplant which, due to chemical linkages formed between the surface-exposed collagen of adjacent partially demineralized bone elements from which the osteoimplant is manufactured, exhibits good mechanical strength, is biocompatible and, in a preferred embodiment, through its bone healing activity and ability to contain bone-growth inducing substances, can promote and/or accelerate new bone growth.
It is therefore an object of the present invention to provide an osteoimplant made up of a solid aggregate of bone-derived elements, adjacent bone-derived elements being bonded to each other through chemical linkages between their surface-exposed collagen, and which possesses good mechanical strength and biocompatibility.
It is another object of this invention to provide an osteoimplant which can optionally include another component such as a reinforcing particle or fiber, fillers, bone-growth inducing substances such as medically/surgically useful substances, and combinations thereof.
It is another object of the invention to provide an osteoimplant possessing a network of pores, perforations, apertures, channels or spaces which permits and encourages penetration by endogenous and exogenous bone healing materials and blood supply, and simultaneously provides a means for incorporating one or more bone healing substances.
It is yet a further object of the present invention to provide an osteoimplant which can be fashioned into a variety of shapes and sizes which are not limited by constraints imposed by the size and/or types of donor bone which are available for construction of the osteoimplant.
It is also an object of the invention to provide a method of manufacturing which will provide a strong, biocompatible osteoimplant of any size and/or shape for implantation.
In keeping with these and other objects of the invention, there is provided an osteoimplant which comprises a solid aggregate of bone-derived elements with adjacent bone-derived elements being bonded to each other through chemical linkages between their surface-exposed collagen.
Further in keeping with the invention, there is provided a method for the manufacture of an osteoimplant which comprises providing a quantity of bone-derived elements presenting surface-exposed collagen and forming chemical linkages between the surface-exposed collagen to bond the elements into a solid aggregate.
The osteoimplant of the present invention possesses a significant advantage over the prior art in its ability to be biocompatible, non-antigenic and to provide good mechanical strength.
Another important advantage of the osteoimplant herein over prior art implants lies in its ability to function as a carrier for, and effectively diffuse, one or more bone-growth inducing substances that promote new bone growth and/or accelerate healing.
The term “osteogenic” as used herein shall be understood to refer to the ability of a substance to induce new bone formation via the participation of living cells from within the substance.
The term “osteoconductive” as used herein shall be understood to refer to the ability of a substance or material to provide biologically inert surfaces which are receptive to the growth of new host bone.
The term “osteoinductive” as used herein shall be understood to refer to the ability of a substance to recruit cells from the host which have the potential for repairing bone tissue.
Use of the expression “bone-derived elements” shall be understood to refer to pieces of bone in any variety of sizes, thicknesses and configurations including particles, fibers, strips, thin to thick sheets, etc., which can be obtained by milling, slicing, cutting or machining whole bone.
The expression “surface-exposed collagen” shall be understood to refer to the result obtained by demineralizing the aforementioned bone-derived elements, the demineralization ranging from substantially complete (in which case the bone-derived elements are primarily collagen) to partial or superficial (in which case only the surfaces of the bone-derived elements present exposed collagen). Partial or superficial demineralization produces bone-derived elements having a surface binding region, namely, exposed collagen while retaining a strengthening region, namely, the unaffected mineralized region of the bone-derived elements.
REFERENCES:
patent: 3609867 (1971-10-01), Hodosh
patent: 3790507 (1974-02-01), Hodosh
patent: 4394370 (1983-07-01), Jefferies
patent: 4430760 (1984-02-01), Smestad
patent: 4440750 (1984-04-01), Glowacki et al.
patent: 4472840 (1984-09-01), Jefferies
patent: 4485097 (1984-11-01), Bell
patent: 4512038 (1985-04-01), Alexander et al.
patent: 4516276 (1985-05-01), Mittelmeier et al.
patent: 4623553 (1986-11-01), Ries et al.
patent: 4627853 (1986-12-01), Campbell et al.
patent: 4636526 (1987-01-01), Dorman et al.
patent: 4637931 (1987-01-01), Schmitz
patent: 4678470 (1987-07-01), Nashef et al.
patent: 4698375 (1987-10-01), Dorman et al.
patent: 4795467 (1989-01-01), Piez et al.
patent: 4842604 (1989-06-01), Dorman et al.
patent: 4932973 (1990-06-01
Boyce Todd M.
Manrique Albert
Dilworth & Barrese
Osteotech Inc.
Prebilic Paul B.
LandOfFree
Method for an osteoimplant manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for an osteoimplant manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for an osteoimplant manufacture will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2536315