Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail
Reexamination Certificate
2002-01-03
2004-12-28
Trost, William (Department: 2683)
Telecommunications
Transmitter and receiver at same station
Radiotelephone equipment detail
C455S561000, C455S067110, C455S067150, C343S878000, C343S894000, C342S357490, C342S357490
Reexamination Certificate
active
06836675
ABSTRACT:
BACKGROUND
1. Field of Invention
This invention is concerned with a method for aiming a directional microwave antenna during the installation, specifically to a computer guided microwave antenna aiming method to get the best link performance for digital microwave communication system.
2. Description of Prior Art
Microwave antennas are usually essential parts of microwave telecommunication systems. These microwave antennas are most likely placed on the top of high structures such as antenna towers or high buildings. Each antenna is placed in a certain distance from another antenna. Installing microwave antennas requires lining up two antennas in a certain way that the microwave transmission and receive will be in the best situation.
The quality of microwave signal transmission depends on many environmental characters. The earth surface terrain can help or disturb the transmission of microwave signal. Any visible object or non-visible interference in the electromagnetic wave path may cause problem to the communication between both ends of the antennas as well as the radio systems behind the antennas.
In the prior art of installing the antenna as well as the radio communication systems, well-trained professional people are needed to get involved. All kinds of method are adopted to install the key devices—antennas. These methods include eyeball, which is most often used and most inaccuracy; multi-meter corresponding to the analog output of the radio, which is often used as a convenient and better accuracy than eyeball; expansive and sophisticate spectrum analyzer system and other professional equipments, which provide much better accuracy but very inconvenient. Most radio systems provide a reference indicator by software or by electronic of signal strength they receive. It helps a lot by indicating the signal strength during the installation. But, when the installer is high up at the roof of a tall building or at the high place of a high tower, it is very hard to carry any additional equipment to measure the signal strength so as to aim the antenna.
Nonetheless, well skilled professional is very hard to find. All above often cause the antennas are not aimed to right direction to provide the best performance for many radio communication system.
The microwave radio communication system is getting more and more popular nowadays, in another word; the modern space is crowded with many different electromagnetic waves. Obviously, it is very easy for a microwave communication system being interfered by other unknown resource. This means, even though a microwave communication system has enough signal strength detected, unknown interference can still cause problem to the communication of the system. Thus, the prior art of setting up the system by aiming the antenna at the direction, at which the system or the test equipments detect the strongest signal strength is not a secure method to guarantee the best signal to noise ratio for the system.
SUMMARY
One object of the present invention is to overcome the disadvantages of the prior-art methods described above and to achieve a novel type of apparatus and a method for aiming the antenna of the microwave communication system at the best direction during the installation.
The present invention is based on implementing the computerized link quality monitoring means, and the software system also guides the installer to follow certain procedures and finally affix and aim the antenna to the best direction, at which the communication between the two ends of the antennas is at the optimal situation.
More specifically, the apparatus in accordance with the present invention is characterized by adopting the link quality as the measurement for the aiming quality. The link quality comprises physical layer tests result of signal strength and noise, and data communication tests result of the communication of the systems. Thus the link quality is a much more accuracy measurement than the measurement of only the signal strength of the prior-art.
Furthermore, the method in accordance with the present invention is characterized by the computerized link quality monitoring mechanism, the software of the computer system can monitor the link quality of the link during the aiming of the installation, and the software system also guides the installers to follow certain procedures and finally the installers affix and aim the antenna to the best direction. In comparison to the prior-art, there are no costly and in-convenient equipments needed during installation. By the guidance of the computer software, a non-professional installer can install the system in a short time at best status.
In particular, when the radio systems of both ends are ready to communicate with each other, the first radio and antenna system is set in working condition, the software system of the present invention will guide the installer to turn the second microwave antenna in a substantially circular horizontal direction and using a computerized monitoring system to monitor and record link quality and corresponding horizontal positions of the horizontal link quality continuously while the second antenna is turning until the second microwave antenna makes a complete circle; affixing the second microwave antenna horizontally in a best horizontal position wherein such best horizontal position has a best link quality under the horizontal aiming situation; to turn the second microwave antenna in two substantially vertical opposing directions and using the computerized monitoring system to monitor and record link quality and corresponding vertical positions of the link quality continuously while the second antenna is turning vertically; and affixing the second microwave antenna vertically in a best vertical position wherein such best vertical position has a best link quality under the vertical aiming situation. Accordingly, the second microwave antenna is placed in a best link quality position in relationship to the first microwave antenna. The best aiming direction achieves.
OBJECTS AND ADVANTAGES
Accordingly, several objects and advantages of my invention are:
1) To provide high quality antenna aiming capability for microwave communication systems.
2) To provide high quality and low cost antenna-aiming capability for microwave communication systems.
3) To provide high efficiency and low cost antenna-aiming capability for microwave communication systems.
4) To provide better feature and easy use antenna-aiming capability for microwave communication systems.
5) To provide better communication system robustness by aiming the antenna at the optimized direction.
The forgoing features and advantages of the present invention can be appreciated more fully from the following description, with references to the accompanying drawings in which.
REFERENCES:
patent: 6415163 (2002-07-01), Keskitalo et al.
patent: 6735452 (2004-05-01), Foster et al.
patent: 6748240 (2004-06-01), Foster et al.
patent: 2004/0048635 (2004-03-01), Goldberg
patent: 2004/0067775 (2004-04-01), Dalal et al.
patent: 2004/0132414 (2004-07-01), Sendyk et al.
Le Danh
Trost William
LandOfFree
Method for aiming and adjusting microwave antenna during... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for aiming and adjusting microwave antenna during..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for aiming and adjusting microwave antenna during... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3303020