Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching
Reexamination Certificate
2000-03-06
2004-04-20
Nguyen, Steven H. D (Department: 2665)
Multiplex communications
Pathfinding or routing
Combined circuit switching and packet switching
C370S401000
Reexamination Certificate
active
06724750
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to communication networks and more specifically voice and data networks within a house, an office or a building using existing telephone lines with a communication port to outside the voice and data network.
2. Description of Related Art
Within an existing home network, devices are limited to one type of network and use either voice devices such as phones or computers. There does not exist a device for home use that allows communications between multiple phones or computers using existing telephone lines. A PBX (private branch exchange) box is the only similar device, but requires each phone to be wired individually to the PBX box. The PBX box is very expensive, and it would be very expensive to adapt an existing house or building to a PBX system if all the telephone lines had to be reinstalled so that each phone line was routed separately between a telephone and the PBX box.
In “Standardization Activities and Technology Competitors for the Home Networking,” Hwang et al., Proceedings of 1998 International Conference on Communication Technology, 1998, pp 787-832, in-home networking is discussed for the connection of various devices and the distribution of data to these devices. Multiple data types with security must be easily configured, have low cost and negligible maintenance. In “Emerging Home Digital Networking Needs,” Chen, W. Y., Proceedings—1997 Fourth International Workshop on Community Networking, IEEE, pp 7-12, 1997, the possibility of using the IEEE 1394 protocol for a digital home network is explored. There are four driving forces for a home network that are discussed, home automation, home computer, digital audio and video distribution, and digital access network.
In U.S. Pat. No 6,005,861 (Humpleman) a home network architecture is described that has an internal digital network interconnecting devices in the home. Network interfaces connect entertainment services into the network by coupling to an external network. In U.S. Pat. No. 5,999,612 (Dunn et al.) a computer adapter and call routing system allows broad band networks, such as cable television, to provide digital data and telephone service. In U.S. Pat. No. 5,991,634 (Hui et al.) a peer to peer protocol is used to provide a plug and play capability in a distributed telephone system. In U.S. Pat. No. 5,929,748 (Odinak) a home control system is described using the electrical wiring of a home for communications. The system includes the uses high bandwidth and high frequency channels along with low frequency channels for control information. In U.S. Pat. No. 5,790,548 (Sistanizadeh et al.) a system and method is described for providing an Internet access by means of a Public Switched Telecommunication Network (PSTN) using a full time asymmetric digital subscriber line (ADSL) between a subscriber processor terminal and a local area network (LAN) node and router located remote from the subscriber.
There are a large number of homes and buildings that have been wired for telephone service, and the wiring usually can only accommodate one or two phone lines. Attached to these phone lines can be several phones, but only one phone per line can be in use on separate conversations at one time. Also unless a calling phone is on one line and the receiving phone is on another line, communication between the two phones cannot be accomplished. A computer can use a telephone line by means of a modem to connect to an Internet service provider (ISP), but if there are more computers than phone lines, all of the computers cannot connect to the Internet a one time. If each telephone line is being used by a computer, then the telephones cannot be used, and computers cannot communicate with one another unless they are using separate lines.
SUMMARY OF THE INVENTION
The present invention provides a means by which the existing wiring in a home or building can be used as a voice and data network enabling both telephones and computers to communicate within the home, or building, as well as communicate with the Internet and a Public Switched Telecommunication Network (PSTN). A home voice and data network (HVDN) of the present invention adapts to the existing telephone lines without any rewiring and allows connection between phones within the home or building as well as between computers that may be operating within the network. Communications to phones and computers outside of the network is accommodated by a device that provides a link to either an Internet service provider (ISP) or a Public Switched Telecommunication Network (PSTN).
Nodes within the network, which might otherwise have a telephone jack for connecting to phone or modem, are connected to a network device called a voice and data module (VDM). A phone and a computer can be connected simultaneously to each VDM at each node of the network. At a node exiting the HVDN is a link to wide area network (LTW) device that is connected to an ISP and a PSTN. Communications between nodes of the network uses the Token in Ethernet Protocol (TEP) technology to enable a mix of voice and data signals to communicate simultaneously within the network. Each VDM device converts voice and data to Ethernet packets to be sent over the HVDN network and converts received packets to voice and data signals to be sent to the attached phone and computer. Similarly the LTW device converts received Ethernet packets to signals to communicate with an ISP or the PSTN, and converts incoming signals from the ISP and PSTN to Ethernet packets.
Each network device, VDM and LTW, connected to the home voice and data network has an address and within this address is an address capacity to separate the phone and the computer that can be attached to the VDM. To place a call from one phone to another phone within the network a predefined number is dialed which commands the VDM to which the calling phone is attached to send a ringing signal to the VDM to which is attached the receiving phone is attached and request a connection. Each VDM device is assigned an ID number that allows the VDM devices to communicate with each other.
The ringing signal sent between VDM devices is first converted to an Ethernet packet. When the ringing packet is received by the VDM that has an ID that matches the destination address (DA) of the packet, the VDM extracts the content of the packet, recognizes it is a ringing signal and attempts to ring the phone which is connected to the receiving VDM. If the receiving phone is already in use a busy signal is sent back to the sending VDM by means of an Ethernet packet. If the receiving phone is not busy, a ringing signal is sent to the receiving phone until the receiving phone is picked up or the sending phone is hung up. Through out this ringing procedure the two VDM devices communicate the status, such as ringing phone, receiving phone picked up and connected, and sending phone hung up. When the receiving phone is picked up, a packet is sent back to the sending VDM that a connection is made. Communication between the sending and receiving phone is by converting a voice signal at one end of the connection to an Ethernet packet, receiving the packet at the other end and converting it back to a voice signal to be connected to the phone receiving the signal. The VDM devices involved in the phone communications monitor the progress of the communication, communicating with each other by means of Ethernet packets. If one phone is hung up, the VDM to which that phone is attached sends a hang up packet to the second VDM device involved in the connection. The second VDM terminates the connection.
A multiple number of phones (conference call) can be connected in a fashion similar to the connection between two phones in the network, where the ID of each VDM involved in the conference call is known to the other VDM devices. A voice signal is converted to a Ethernet packet by a sending VDM which is sent to the receiving VDM devices involved in the conference call. Each of the receiving VDM devices will then convert the packet back to a voic
Ackerman Stephen B.
Lara Networks, Inc.
Nguyen Steven H. D
Sako Bradley T.
LandOfFree
Method for a link to a wide area network device in a home... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for a link to a wide area network device in a home..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for a link to a wide area network device in a home... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3224346