Surgery – Miscellaneous – Methods
Reexamination Certificate
2001-03-26
2003-06-24
Lacyk, John P. (Department: 3736)
Surgery
Miscellaneous
Methods
C600S300000
Reexamination Certificate
active
06581606
ABSTRACT:
This document may contain material which is the subject of copyright protection. All rights in such copyrightable material are hereby reserved.
FIELD OF THE INVENTION
The present invention relates generally to a method, apparatus and system for use in treating a patient with an antineoplastic drug to optimize drug therapy and to prevent an adverse drug response.
The present invention can utilize either drug levels or other surrogate markers to determine the effectiveness of the dosing regimen and, if necessary, to suggest a new more optimal drug dose.
The term “antineoplastic drug” as used herein includes, but is not limited to: chemotherapeutic agents; drugs which have an antineoplastic effect, but which are not normally classified as chemotherapeutic agents, such as, for example, warfarin, heparin, minocycline, Vioxx, Celebrex, etc.; drugs which have an antineoplastic effect that are currently in Phase I, II and/or III trials; epothilones, analogs of epothilones, and their class of compounds; melphalan (Alkeran), carmustine {BCNU} (BiCNU), busulfan (Busulfex), lomustine {CCNU} (CeeNU), cyclophosphamide (Cytoxan), dacarbazine (DTIC-Dome), polifeprosan 20 with carmustine implant (Giladel), sterile ifosfamide (Ifex), chlorambucil (Leukeran), mechlorethamine (Mustargen), busulfan (Myleran), cyclophosphamide (Neosar), carboplatin (Paraplatin), cisplatin (Platinol), thiotepa (Thioplex), capecitabine (Xeloda), streptozocin (Zanosar), bicalutamide (Casodex), flutamide (Eulexin), leuprolide acetate (Lupron), nilutamide (Nilandron), leuprolide acetate (Viadur), doxorubicin hydrochloride (Adriamycin), bleomycin sulfate (Blenoxane), daunorubicin hydrochloride (Cerubidine), dactinomycin (Cosmegen), daunorubicin citrate liposome injection (DaunoXome), doxorubicin hydrochloride liposome injection (Doxil), epirubicin hydrochloride (Ellence), idarubicin hydrochloride (Idamycin), mitomycin (Mutamycin) doxorubicin (Rubex), valrubicin (Valstar), anastrozole (Arimidex), toremifene citrate (nolvadex), fluorouracil (Adrucil), cytarabine (Cyttosar-U), fluorouracil (Efudex), fludarabine (Fludara), (Fluorouracil), floxuridine (FUDR), interferon alfa-2
b
, recombinant (Intron A), Immunex (Methotrexate), plicamycin (Mithracin), mercaptopurine (Purinethol), methotrexate (Rheumatrex), interferon alfa-2
a
, recombinant (Roferon-A (Thioguanine), medroxyprogersterone acetate (Depo-Provera), estramustine phosphate sodium (Emcyt), estradiol (Estrace), leuprolide acetate (Lupron), megestrol acetate (Megace), octreotide acetate (Sandostatin), octreotide acetate for injection suspension (Sandostatin LAR), deithylstilbestrol diphosphate (Stilphostrol), testolactone (Teslac), goserelin acetate (Zoladex), etoposide phosphate (Etopophos), vincristine sulfate (Oncovin), etoposide (Toposar), vinblastine (Velban), etoposide (VePesid), vincristine sulfate (Vincasar PFS), teniposide (Vumon), trastuzumab (Herceptin), gemtuzumab ozogamicin (Mylotarg), rituximab (Rituxan), exemestane (Aromasin), irinotecan hydrocholride (Camptosar), asparaginase (Elspar), gemcitabine hydrochloride (Gemzar), altretamine (Hexalen), topotecan hydrochloride (Hycamtin), hydroxyurea (Hydrea), (Leucovorin calcium), cladribine (Leustatin), mitotane (Lysodren), procarbazine hydrochloride, (Matulane), vinorelbine tartrate (Navelbine), pentrostatin sodium (Nipent), mitoxantrone (Novantrone), pegaspargase (Oncaspar), denileukin diftitix (Ontak), altretinoin (Panretin), porfimer (Photofrin), bexarotene (Targretin), bexarotene (Targretin Gel), paclitaxel (Taxol), docetaxel (Taxotere), temozolomide (Temodar), bacillus of Calmette and Guerin (Theracys BCG Live), arsenic trioxide (Trisenox), tretinoin (Vesanoid); substances which foster anti-tumor activity; and all substances derived from and/or related to the foregoing substances.
Furthermore, wherever the generic term “antineoplastic drug” is used herein it is also intended to mean species which employ any or several of the individual antineoplastic drugs as defined and/or alluded to hereinabove.
BACKGROUND OF THE INVENTION
When a patient begins taking an antineoplastic drug or any medication for a length of time, a titration of the amount of drug taken by the patient is necessary in order to achieve the optimal benefit of the drug, and at the same time to prevent any undesirable side effects that taking too much of the drug could produce. Thus, there is a continuous balance between taking enough drug in order to gain the benefits from that drug and at the same time not taking so much drug as to illicit a toxic event.
There is large inter-individual variability in the patient pharmocodynamic and pharmacokinetic interactions of drugs. What may be an appropriate drug dose for one individual, may be too much or too little for another. Prior to this invention a physician was required to estimate the correct drug dosage for a patient and then to experiment with that dosage, usually by trial and error, until the correct dosage was achieved. Likewise, the FDA labeling of a drug suggests dosages based on epidemiological studies and again does not account for inter-individual variability. Non-linear least squares modeling methods involve the use of large amounts of data relating to a general population in order to calculate a best fit. Much like linear regression models, this method cannot take into account the variability between people with the same population characteristics.
Bayesian analysis is another method used to relate drug dose to efficacy. This method employs large-scale population parameters to stratify a population in order to better characterize the individuals. This method does not take into account the changes that can occur within a person over time, and as a result cannot reliably estimate dosages.
Pharmacokinetic compartment modeling has had success with some drugs, but because the models are static and cannot adapt themselves to changes within a population or a patient, they are once again undesirable for dynamically determining drug dosages.
Expert systems have been developed using technology to predict drug dosages for immunosuppressant drugs (see, e.g., U.S. Pat. Nos. 5,365,948, 5,542,436 and 5,694,950). These algorithms, however, are not generic and only use immunosuppressant blood levels. Each algorithm is specific to an individual immunosuppressant drug. As it stands, these prior inventions cannot be applied to other drugs and do not have a non-linear feedback loop mechanism.
It is a desideratum of the present invention to avoid the animadversions and limitations of prior systems.
SUMMARY OF THE INVENTION
The present invention provides a method for calculating a revised dose of an antineoplastic drug for a patient using said antineoplastic drug, comprising the steps of: accepting as a first input the patient's current antineoplastic drug dose; accepting as a second input a maximum dose of the antineoplastic drug; accepting as a third input a percent response of the patient based on one or more surrogate markers used to monitor said antineoplastic drug; and determining a revised dose, wherein said revised dose is a function of said current dose minus a ratio of the percent response of the patient and a ratio of said current dose to said maximum dose plus the percent of individual patient response multiplied by a response factor.
The present invention also provides a storage device having stored thereon an ordered set of instructions which, when executed by a computer, performs a predetermined method, comprising: first means for accepting as input a patient's current antineoplastic drug dose; second means for accepting as input a maximum dose of the antineoplastic drug; third means for accepting as input a percent response of a patient based on surrogate markers for monitoring said antineoplastic drug; and fourth means for calculating a revised dose, wherein said revised dose is a function of said current dose minus the ratio of a percent response of the patient and the ratio of said current dose to said maximum dose plus the percent of individual patient res
Kutzko John D.
McMichael John P.
Singer Michaeal G.
Gifford, Krass, Groh Sprinkle, Anderson & Citkowski, P.C.
Lacyk John P.
The Rx Files Corporation
LandOfFree
Method, apparatus and system for use in treating patient... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method, apparatus and system for use in treating patient..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, apparatus and system for use in treating patient... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3145392