Method, apparatus and computer program product for three...

Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C434S114000, C340S407100

Reexamination Certificate

active

06657617

ABSTRACT:

BACKGROUND
1. Field of the Invention
This invention relates to a user interface for a computerized device, and more particularly to rendering information for a user in a tactile-detectable delineation on a three-dimensional display device.
2. Related Art
Data processing systems typically rely on a pointing device and a data entry device for receiving inputs and a display device for visual display of data. Display devices are typically limited to displaying in two dimensions. While graphical achievements have been made in order to display a virtual three dimensional object, the three dimensional world is still limited to two dimensional visual representation with typical display devices.
Typical data entry devices include, for example, a keyboard, a keypad or other such devices through which data in the form of control indicia or some other symbol may be input. Data entry devices are limited in that they receive input in relation to fixed control indicia. There are a fixed number of keys, with the majority of the keys having fixed indicia. More recently developed vocal recognition devices may be used in lieu of a keyboard. However, because of privacy and environmental noise considerations, there are limitations on the usability of vocal recognition devices.
Pointing devices are limited in that they typically only provide visually represented association to a user. In addition, with such devices there is a reliance on the hand-eye coordination of the user. Also, most pointing devices are limited to non symbolic input, whereby the user must switch between pointing devices and data entry devices in order to accomplish tasks.
One area of development in interface devices concerns tactile detectable surfaces that convey information to a user. For example, hyper-Braille readers allows seeing impaired users to detect Braille letters from a tactile detectable surface. U.S. Pat. No. 5,736,978 discloses one such reader. U.S. Pat. No. 5,717,423 discloses a combination pointing device/display device, in which the display includes a tactile detectable surface.
The related application concerns an interface device which, in one embodiment, combines pointing, data entry and a display that has a tactile detectable aspect. The tactile detectable display provides topographical rendering of information. In one embodiment, the device includes a sensing system that detects force, magnitude and direction of user input.
Difficulties arise in using tactile detectable interface devices with conventional applications for a number of reasons, including legacy issues. There are a vast array of existing software applications that do not include features which support tactile detectable rendering of the information associated with or processed by the application. That is, these applications are capable of receiving information having standard attributes for displaying in a single plane on a two-dimensional display device, but which do not directly relate to three dimensional rendering. It would be impractical in many cases to modify and recompile these applications to enable them to support tactile detectable interface devices. Therefore a need exists to somehow directly interpret existing applications and information formatted for existing applications, without extensively modifying the information or the applications, so that they are compatible in real time with tactile detectable interface devices.
Several major limitations exist in these prior attempts to provide some three-dimensional or topographical interface. They apply primarily to closed systems or platform or application dependent systems. Alternately, they only support specific limited topographical elements or attributes.
Present Enterprise-type native applications depend on operating systems (OS's) to do underlying two-dimensional rendering of complex graphical objects for output devices. Application frameworks exist for two-dimensional applications, but not for three-dimensional applications, in which the applications can use application programming interfaces (APIs) to accomplish their programming tasks. It is very costly for OS Enterprise Stack Applications to generate three-dimensional data, since current three-dimensional hardware device surface input is not supported by the two-dimensional OS that the applications were developed for. As previously stated, in some cases it is not practical to recompile existing two-dimensional legacy applications.
Problems with prior efforts to implement three-dimensional and topographical systems within Java based systems include:
(1) Legacy java virtual machines (JVM's) today are aware in two-dimensional fashion only (x,y);
(2) JVM's today, which require a topographical input/output (I/O) device, have to coexist with existing I/O devices (display, audio, keyboard and mouse) and not negatively impact performance;
(3) JVM's today need to incorporate a closed loop control feedback system in order to support a topographical device (frameworks are needed to generically handle three-dimensional bi-directional feedback from the user and display three-dimensional topographical data;
(4) There are problems in converting legacy two-dimensional information and three-dimensional topographical information into topographical device specific information; and
(5) Needs of topographical input and output devices are different than typical devices attached to JVM operating system.
In short, although Java systems permit a wider range of topographical attributes to be associated with their objects and provide the command structure to implement these additional attributes, since current Java systems operate with traditional native platform specific OS's, they do not support extended topographical interfaces. Each present system utilizes specific hardware and/or application modules for the particular closed system. These modules cannot be extended to other platforms and/or applications, and support only preprogrammed topological attributes. Thus, for Java based systems, which utilize JVM's, there is an even greater need for improvements in support for three-dimensional and topographical information.
SUMMARY OF THE INVENTION
The foregoing need is addressed in the following invention, according to which information is received by a computer system. The information has attributes which the computer system interprets for displaying in a single plane on a two-dimensional display device. According to the invention, the information is rendered in a delineation that is tactile-detectable to a user on a control surface of a three-dimensional display device. The control surface has a flexible material, a number of mechanisms dispersed about the flexible material, and a number of actuators for controlling a position of the mechanisms to adjust height of the flexible material, so that the control surface provides a three dimensional space.
For displaying on a two-dimensional display device, the information includes background and character attributes, according to which the characters are displayable in a color or shade that contrasts to the background. At least one of the characters has a certain character attribute for two dimensionally displaying, such bold, italic, underlining, font type or color. As rendered on the three-dimensional display device, a representation of the background is rendered in a first plane of the control surface space, while a representation one of the characters has a top surface of the character rendered in a second plane of the space, with the second plane being a first height above the first plane. A representation of the one of the characters having the certain character attribute has a top surface of the character rendered in a third plane of the space, where the third plane is a second height above the first plane.
This advantageously permits applications and information formatted for existing applications to be adapted in real time without extensively modifying the information or the applications, so that they are compatible with tactile detectable interface devices.
In ano

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method, apparatus and computer program product for three... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method, apparatus and computer program product for three..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, apparatus and computer program product for three... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3158551

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.