Method, apparatus and computer program for molecular simulation

Data processing: structural design – modeling – simulation – and em – Simulating nonelectrical device or system – Biological or biochemical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

07908129

ABSTRACT:
A method of simulating behaviour of a molecular system with m degrees of freedom over time comprising a partial momentum refreshment step and a molecular dynamics step, wherein the partial momentum refreshment step comprises: given a starting position q and a starting momentum p of the molecular system, partially refreshing the momentum to define refreshed momentum p′ evaluating the shadow Hamiltonian331Δtat position q and momentum p′; and accepting or rejecting the refreshed momentum p′ according to a Metropolis-type function and if p′ is accepted using p′ as the resulting momentum p and starting position q as the resulting position q or if it is rejected, using p as the resulting momentum p and starting position q as the resulting position; and wherein the molecular dynamics step comprises: given a starting position q and starting momentum p of the molecular system, running a molecular dynamics simulation over a fixed number of iterations and obtaining new position q′ and new momentum p′; evaluating the shadow Hamiltonian332Δtat position q′ and momentum p′ after the molecular dynamics simulation; and accepting or rejecting the new system configuration produced by the molecular dynamics simulation according to a Metropolis-type function and, if the new system configuration is accepted, using q′ as the resulting position q and p′ as the resulting momentum p or, if it is rejected, using the original starting position q as the resulting position q and negating the original starting momentum p to give the resulting momentum p; wherein either the partial momentum refreshment or the molecular dynamics step is the first step of the method, and the resulting position and resulting momentum of the first step provides the starting position q and starting momentum p for the next step.

REFERENCES:
patent: 6021383 (2000-02-01), Domany et al.
patent: 2003/0046050 (2003-03-01), Padilla et al.
patent: 96/12168 (1996-04-01), None
Search Report issued Dec. 10, 2007 in priority United Kingdom Patent Application No. 0715659.9.
V. Rosato et al. “Thermodynamic properties of amorphous silicon via tight binding simulation”, Computational Materials Science, Jun. 2000.
Simon Duane et al., “Hybrid Monte Carlo”, Phys. Lett. B, vol. 195, No. 2, p. 216, Sep. 1987.
B. Mehlig, et al., “Hybrid Monte Carlo method for condensed-matter systems”, Physical Review B, vol. 45, No. 2, Jan. 1992.
J. Izaguirre, et al., “Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules”, Journal of Computational Physics 200, pp. 581-604Jun. 2004.
G. Benettin, et al., “On the Hamiltonian Interpolation of Near-to-the Identity Symplectic Mappings with Application to Symplectic Integration Algorithms”, Journal of Statistical Physics, vol. 74, Nos. 5/6, pp. 1117-1143 (1994).
E. Hairer and C. Lubich, “The life-span of backward error analysis for numerical integrators”, Numer. Math., pp. 441-462, (1997).
S. Reich, SIAM, J. Numer. Anal., vol. 36, No. 5, pp. 1549-1570, 475 (1999).
B. Leimkuhler and S. Reich, “Geometric integrators”, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2005).
E. Hairer, C. Lubich, and G. Wanner, “Chapter VI. Symplectic Integration of Hamiltonian Systems”, Geometric Numerical Integration (Springer-Verlag, Berlin Heidelberg, 2002).
B. Moore and S. Reich, “Backward error analysis for multi-symplectic integration methods”, Numer. Math. 95, pp. 625-652 (2003).
R. Skeel and D. Hardy, “Practical Construction of Modified Hamiltonians”, SIAM, J. Sci. Comput., vol. 23, No. 4, pp. 1172-1188, (2001).
C. Sweet, S. Hampton, and J. Izaguirre, “Optimal implementation of the Shadow Hybrid Monte Carlo method”, Tech. Rep. TR-2006-09, University of Notre Dame (Jul. 2006).
C. Sweet, S. Hampton, R. Skeel, and J. Izaguirre, “Separable shadow hybrid Monte Carlo method”, Department of Computer Science Engineering, University of Notre Dame (Dec. 2006).
E. Akhmatskaya and S. Reich, “The Targeted Shadowing Hybrid Monte Carlo (TSHMC) Method”, pp. 141-153, (2006).
A. Horowitz, “A generalized guided Monte Carlo algorithm”, Phys. Lett. B 268, pp. 247-252 (1991).
A. Kennedy and B. Pendleton, Cost of the generalized hybrid Monte Carlo algorithm for free field theory, Nucl. Phys. B 607, pp. 456-510 (2001).
H. Andersen, Molecular dynamics simulations at contstand pressure and/or temperaturea), J. Chem. Phys. 72, pp. 2384-2393 (Feb. 1980).
S. Feller, Y. Zhang, R. Pastor, and B. Brooks, “Constant pressure molecular dynamics simulation: The Langevin piston method”, J. Chem. Phys. 103, pp. 4613-4621 (Sep. 1995).
M. Allen and D. Tildesley, “Molecular Dynamics”, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
R. MacKay, “Some Aspects of the Dynamics and Numerics of Hamiltonian Systems”, in the dynamics of numerics and the numerics of dynamics, edited by D. Broom-head and A. Iseries (Clarendon Press, Oxford, 1992), pp. 137-193.
S. Gupta, A. Irbäck, F. Karsch, and B. Pterersson, “The Acceptance Probability in the Hybrid Monte Carlo Method”, Phys. Lett. B, vol. 242, No. 3, 4, pp. 437-443 (Jun. 1990).
R. Burden and J. Faires, “Numerical Analysis”, Eighth Edition, Brooks/Cole, Oct. 2005.
J. Ryckaert, G. Ciccotti, and H. Berendsen, “Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes”, J. Comput. Phys. 23, pp. 327-341 (1977).
R. Faller and J. de Pablo, “Constant pressure hybrid Molecular Dynamics-Monte Carlo simulations”, J. Chem. Phys., vol. 116, No. 1, pp. 55-59 (Jan. 2002).
A. Brünger, C. Brooks, and M. Karplus, “Stochastic Boundary Conditions for Molecular Dynamics Simulations of ST2 Water”, Chem. Phys. Lett., vol. 105, No. 5, (Mar. 1984).
H. Berendsen, J. Postma, W. van Gunsteren, A. DiNola, and J. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., vol. 81, No. 8, pp. 3684-3690 (Oct. 1984).
H. Berendsen, J. Postma, W. van Gunsteren, and J. Hermans, “Interaction Models for Water in Relation to Protein Hydration”, in Intermolecular Forces, edited by B. Pullman (D. Reidel Publishing Company, Dordrecht, 1981), pp. 331-342.
E. Lindahl, B. Hess, and D. Spoel, “GROMACS 3.0: a package for molecular simulation and trajectory analysis”, J. Mol. Modeling 7, pp. 306-317, (2001).
T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: AnN• log(N) method for Ewald sums in large systems”, J. Chem. Phys., vol. 98, No. 12, pp. 10089-10092 (Jun. 1993).
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys., vol. 103, No. 19, pp. -85778593 (Nov. 1995).
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics”, J. Molec. Graphics, vol. 14, pp. 33-38 (Feb. 1996).
W. Anderson, M. Grütter, S. Remington, L. Weaver, and B. Matthews, “Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme: Implications for the Mechanism of Catalysis”, J. Mol. Biol, 147, pp. 523-543 (1981).
L. Hardy and A. Poteete, “Reexamination of the Role of Asp20in Catalysis by Bacteriophage T4 Lysozyme†”, Biochemistry 30, pp. 9457-9463 (1991).
R. Kuroki, L. Weaver, and B. Matthews, A Covalent Enzyme-Substrate Intermediate with Saccharide Distortion in a Mutant T4 Lysozyme, Science, vol. 262, pp. 2030-2033 (Dec. 1993).
R. Kuroki, L. Weaver, and B. Matthews, “Structure-based design of a lysozyme with altered catalytic activity”, Nat. Struct. Biol., vol. 2, pp. 1007-1011 (Nov. 1995).
R. Kuroki, L. Weaver, and B. Matthews, “Structural basis of the conversion o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method, apparatus and computer program for molecular simulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method, apparatus and computer program for molecular simulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, apparatus and computer program for molecular simulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2780973

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.