Method and user interface for representing architectural...

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Having operator control interface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S017000, C345S215000, C345S215000, C345S215000

Reexamination Certificate

active

06556878

ABSTRACT:

TECHNICAL FIELD
This invention relates in general to displaying information in a compute system; more particularly, to a method and interface for displaying architectural diagrams on a computer screen.
BACKGROUND
For many years, architects, facility planners and builders have created diagrams representing a simplified, abstract version of a detailed, accurately scaled architectural floor plan. Most typically, such diagrams are used during the design process, to enable designers to examine multiple options rapidly, and to seek feedback from facility end users prior to committing to detailed floor plans. Another use for building diagrams is in public signage, such as a location map at a shopping complex or hospital; an arrow with the words “you are here” often appears in the location map. In both case the use of a diagram in lieu of a detailed plan allows a broad spectrum of the population to understand the basic organization of a facility design quickly.
The development of methodology for creating and displaying plan diagrams has not kept pace with the development of methods for the drafting of detailed architectural floor plans. The majority of new commercial and public buildings are now developed with the use of computer-aided design (CAD) for the construction documents. A nearly universal standard of file formats has been established for CAD drawings, such that users of different CAD software programs can often exchange files with minimal difficulty. In contrast, most architectural designers still rely on hand drawing on paper during the creative process. While CAD vendors have made modules available specifically for the design phase that are suitable for diagramming, neither a broad acceptance of a method or any common language of diagramming exists.
Along with the near-universal acceptance of the CAD format for developing detail plans is the archiving of details plans in a CAD format. Whereas floor plans were archived in large flat drawers, tubes and on microfilm in the past, most floor plans are now stored as electronic CAD files (printed versions may be stored in drawers or tubes as well). Electronic CAD files are easier to store and access than printed versions, however, they are typically more difficult to read on a computer monitor than on a full-size printed version. The standard resolution of a computer monitor is 72 dots per inch. At this resolution, thin lines tend to break up visually. Additionally, most computer monitors are less than half the size of a standard construction document sheet. Comprehension of a detailed floor plan on a computer screen typically requires a good deal of scrolling back and forth on the screen, because if the plan is viewed at a size to fit entirely on the screen, details are too small to comprehend. Furthermore, the lack of sharpness of lines can lead to eyestrain.
The level of sharpness of lines displayed on a computer monitor is important because architectural floor plans are primarily comprised of lines, often in varying thicknesses. The traditional drawing system relies on a large number of lines and text labels to describe an architectural floor plan. For example, the simplest classroom will typically be represented with two parallel lines on each of four sides (total of eight lines), a door and arc swing (two or more additional lines) and a label in the center of the area “Class Room.” At least eleven distinct elements are required to display the classroom. Multiply this by hundreds of rooms and or features in a typical new facility, and the number of elements to display in a single architectural floor plan can easily range into the thousands—not an efficient or comfortable amount of information to view on a computer screen.
The design and construction process has become more complex in the last several decades. During this period, the field of specialized facility planning has developed. Although facility planners are often architects, and often work within architectural firms, their work product is distinct from that of the traditional architect. For example, a health care planner or educational facility planner is often involved a year or more before an architectural contract is given out, for the purpose of examining and making recommendations regarding the various factors and approaches to the facility plan. Planners typically use a wide range of tools and methods, including word processing programs, spread sheet programs, and presentation programs. Planners may or may not utilize a CAD program, but unlike the traditional architect, their key work product involves communication, reports and documents that are processed and understood by a wide variety of non-architectural or engineering professionals. Planners must typically interact with end-users, financial, public relations and legal professionals. Detailed architectural plans are often difficult for non design-building professionals to comprehend. Furthermore, non design-building professionals typically do not maintain or know how to use CAD software.
The increased complexity of the design and building process makes it more important than ever for planners and architects to access, manipulate and communicate the information contained in architectural floor plans. Like scientists and attorneys, successful architects and planners review precedents and build upon previous designs, rather than continuously innovating. Utilization of existing plans allows the designer to avoid mistakes and make incremental improvements. Given the limitations of a computer monitor, how does a professional planner or architect effectively review large quantities of architectural floor plans? Given the lack of any universal method of diagramming or displaying preliminary designs, how does the planning and design professional proceed during the facility planning and initial design phases?
While continuous innovation is impractical for most architects and planners, the ability to innovate in response to unique problems is highly valued in the design and construction industry. Given the complexity of today's building projects, and the vast quantity of precedents to review, how does the design professional leverage precedent in the design innovation process? How does he identify patterns between plans? Research demonstrates that the human brain is hard-wired to recognize patterns. Leslie Hart writes in “Human Brain and Human Learning,” 1983 “ . . . pattern-matching is inherently pleasing because that is what our minds are designed (or programmed) for . . . Quite apart from anything the teacher does . . . the student, being human, is a pattern-finder and pattern maker.” In order to recognize patterns, what type of interface and method of interacting with design precedents and concepts will facilitate pattern recognition?
Research on innovation and creativity further indicates that the quality of innovation is positively correlated with large quantities of information. Michael Michalko writes in “Cracking Creativity, The Secrets of Creative Genius,” 1998, that quantity fosters excellence: “ . . . the most respected produced not only more great works, but also more “bad” ones. Out of their massive quantity of work came quality . . . Fluency of thought means generating quantities of ideas. Quantity breeds quality . . . the sensible thing to do is to produce many ideas before we evaluate.” Given the massive number of building precedents in any given category of facilities, how does the planner and designer review and comprehend a sufficient quantity of plan concepts?
Michalko goes on to describe the value of abstraction in developing innovative concepts: “Abstraction is a basic principle in restructuring a problem . . . Einstein despaired of creating new knowledge from already existing knowledge . . . So he reversed this procedure and worked at a higher level of abstraction.” What type of method and interface will allow the architect or planner to view previously developed designs at an abstract level, allowing for the creation of new, innovative solutions&ques

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and user interface for representing architectural... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and user interface for representing architectural..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and user interface for representing architectural... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3072232

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.