Method and systems for establishing vascular access

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S284000

Reexamination Certificate

active

06238369

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the design and use of medical devices, and more particularly to a method and system for establishing temporary access to a patient's vascular system for hemodialysis and other extracorporeal blood treatments.
Access to a patient's vascular system can be established by a variety of temporary and permanently implanted devices. Most simply, temporary access can be provided by the direct percutaneous introduction of a needle through the patient's skin and into a blood vessel. While such a direct approach is relatively simple and suitable for applications which are limited in time, such as intravenous feeding, intravenous drug delivery, and the like, they are not suitable for hemodialysis and other extracorporeal procedures that must be repeated periodically, often for the lifetime of the patient.
For hemodialysis and other extracorporeal treatment regimens, a variety of transcutaneous catheters and implantable ports have been proposed over the years. Transcutaneous catheters, such as the Tesio catheter available from Med Comp and the Perm-Cath™ available from Quinton, comprise a single catheter tube having a distal end placed in a vein in an in-dwelling manner and a proximal end which extends through the skin and is which available for connection to a hemodialysis or other blood treatment system. Such catheter includes a DACRON® cuff disposed just beneath the skin in order to reduce the risk of infection.
Implantable ports, in contrast, are entirely subcutaneous and connected to a vein or an artery by a subcutaneous cannula. Access to the port is achieved by percutaneous placement of a needle or other connecting tube. Such ports typically comprise a needle-penetrable septum to permit percutaneous penetration of the needle. Recently, several valved-port designs have been proposed, where introduction of a needle or other access tube opens the valve to provide flow to the cannula which connects to the blood vessel.
Both the transcutaneous and implanted port vascular access systems suffer from certain disadvantages and limitations. For example, both such access systems permit only limited blood flow rates. In the case of transcutaneous catheters, the limited flow rates result from the generally small lumen diameters available in in-dwelling venous catheters. In the case of implanted port access systems, the limited flow rates have resulted from both the port structures and the relatively small lumen diameters available in the cannulas which connect the port to the blood vessel. Such limited blood flow rates are problematic since they prolong the duration of the associated extracorporeal blood treatment protocol, such as hemodialysis, hemofiltration, and apheresis.
The initial implantation of both the transcutaneous and implanted port vascular access systems has also been problematic. Such systems generally comprise a single catheter or cannula which is connected to or implanted within the blood vessel and brought to the external attachment point, i.e. either the implanted port or transcutaneous tract through the skin. The subcutaneous placement of the catheter or cannula is difficult in a number of respects. For example, catheters and cannulas having their distal ends implanted in the jugular vein are typically bent by an angle from 90° to 180° to locate their associated ports or catheter exit points at an appropriate location on the patient's chest. Such bends also can accommodate excess length in the connecting catheters and cannulas. The bends, however, are also subject to kinking and other problems. Thus, it would be desirable to provide methods and systems for implanting vascular access catheters and cannulas which can accommodate different patient characteristics and placement patterns.
An even more significant problem with prior transcutaneous and implanted port vascular access systems has been replacement. It is often necessary to replace a transcutaneous catheter when its distal end becomes dysfunctional due to plugging or other causes. Heretofore, it has usually been necessary to remove the entire catheter, including the subcutaneous cuff which has become ingrown in the tissue. In the case of implanted port systems, either the port or the cannula attached to the blood vessel could become dysfunctional. Heretofore, it has generally been necessary to remove both the port and the implanted cannula when either needs to be replaced. It would therefore be desirable to provide improved methods and systems which permit only a portion of the implanted system to be replaced when other portions of the system remain functional.
For these reasons it would be desirable to provide improved transcutaneous and implanted port access systems and methods for their implantation and replacement which would overcome at least some of the problems described above. In particular, it would be desirable if the vascular access systems could provide enhanced flow rates, preferably above at least 200 ml/minute, more preferably above 500 ml/minute, still more preferably above 600 ml/minute, and even more preferably above 700 ml/minute. Systems and methods of the present invention should also facilitate both initial implantation and, if necessary, subsequent replacement of system components with minimum trauma to the patient. At least some of these objectives will be met by the different aspects of the present application described below.
2. Description of the Background Art
U.S. Pat. Nos. 5,562,617 and 5,041,098 are exemplary of implantable systems employing cannulas extending between a port and a blood vessel for providing extracorporeal circulation. U.S. Pat. Nos. 5,417,656 and 5,281,199 show implantable ports which are connected to vascular cannulas via a transition region (
FIG. 1A
) and to a multiple branch cannula (FIG.
21
). U.S. Pat. No. 4,892,518 shows an implanted port with a transition region extending to a cannula. U.S. Pat. Nos. 5,234,406 and 5,215,530 show two-piece catheters having a distal portion which can be placed percutaneously. The '406 patent discloses a large diameter proximal portion to enhance the flow rate of anesthetics to the subarachnoid region of the spine. U.S. Pat. Nos. 5,203,771 and 4,181,132 show implantable connectors which provide for percutaneous access to implanted shunts.
Related co-pending applications, assigned to the assignee of the present application, include serial numbers 08/745,903; 08/724,948; 08/634,634; 08/539,105; and 60/036,124.
The full disclosures of each of the U.S. Patents and co-pending applications listed above are hereby incorporated herein by reference.
SUMMARY OF THE INVENTION
The present invention provides improved methods and systems for accessing body lumens, particularly blood vessels, but also the peritoneal cavity, and the like. The systems comprise an access cannula, usually comprising a distal portion and a proximal portion, which is implanted from the body lumen to a proximal access site, typically an implanted port or a transcutaneous access location catheter. Distal access to the body lumen is effected by any one of a variety of access devices and techniques, such as in-dwelling cannulas, cross-tubes (T-catheters), end-to-side anastomosis, and the like. The methods and the systems of the present invention are particularly useful in that they both facilitate initial implantation of the access cannula system and simplify replacement of all or a portion of the access cannulas system should such replacement become necessary. The design of the access cannulas also minimize flow resistance, making the systems particularly compatible with high volume extracorporeal treatment protocols, e.g. those with flow rates above 200 ml/minute, usually above 500 ml/minute, and often above 600 ml/minute, and sometimes above 700 ml/minute or higher.
According to a first aspect of the method of the present invention, access to a body lumen in the patient is established by implanting a distal access cannula between the body lumen and a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and systems for establishing vascular access does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and systems for establishing vascular access, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and systems for establishing vascular access will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2491658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.