Method and system to abort data communication traffic in a...

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S758000

Reexamination Certificate

active

06434165

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of data communications. More particularly, the present invention relates to a method and system to abort information being transmitted over a communications network.
BACKGROUND OF THE INVENTION
Communication networks have become virtually indispensable in building a thriving economy and typically play an essential role in generating prosperity in a modem society. Communication networks permit users to readily gain access to and exchange information of all types (e.g., sound, text, numerical data, video, graphics, multimedia, etc.). Increasing communication efficiency facilitates greater productivity and reduced costs in numerous activities. Information transmitted over communication networks is utilized in the performance of a number of functions, including the conveyance and analysis of ideas and trends in most areas of business, science, education and entertainment. Typically, a communications network transmits a significant amount of information to peripheral devices for processing and use in performing designated tasks.
The amount of information flowing through a typical communication network is not constant. At times the peripheral devices coupled to a communication network require more information to perform their designated tasks than other times. In addition, most communication systems are expanded over time to include additional peripheral devices, resulting in increased demands for bandwidth. Bandwidth is the amount of data transmitted over a communications network in a given period of time. Even if the absolute number of peripheral devices coupled to a communication network does not change, older peripheral devices are usually replaced by newer, more advanced peripheral devices that increase bandwidth requirements.
Generally, communication network resources are relatively expensive and it is uneconomical to build a network with enough bandwidth to instantaneously handle all possible information transmission requests under worst case scenarios. Communication networks built with the ability to handle the maximum possible communication load that all the peripheral devices could generate if they all tried to access the network at one time are usually inefficient. In such a communication network some network resources are usually idle most of the time and typical communication networks are built with limited resources. Upgrading communication network facilities to provide increased bandwidth capacity for new peripheral devices is usually an expensive, time-consuming, and disruptive process. Communication network facility upgrades are not undertaken lightly and advanced communication networks are typically harder to maintain, service, and administer.
Even though limiting communication network resources is economically efficient in many instances, the limitation impedes a system's performance in certain situations. Complicating matters is the fact that communication networks do experience higher activity and traffic at certain peak operating times. For example, a communication network's resources are usually pushed to capacity when numerous multiple peripheral devices attempt to log onto and transmit data over the network simultaneously or when an application is transmitting a very large file in a burst. In such situations some of the peripheral devices can not communicate with one another and a transfer of information is delayed. When the amount of data to be transmitted exceeds a network's bandwidth, the network becomes overloaded and the time or “latency” for transmitting a packet of data increases dramatically.
Usually, communication systems convey a wide variety of information and some information is more critical than other information to the operation of peripheral devices. A number of factors contribute to the importance or priority of a particular piece of information or data. In many instances, operational constraints of peripheral devices dictate that certain information is essential to the operations of a system and has more sensitive latency tolerances. It is also important to retain adequate bandwidth resources to transmit network control commands and information related to maintaining an adequate flow of information through a communication network. For example, key network administration data, such as communication network control information, is typically critical to the operation of the communication network.
Communication of information is usually restrained during times of peak communication traffic, including delays in communication of high priority information. Since most communication networks experience some periods of increased communication traffic, limited bandwidth generally leads to important or high priority information not being conveyed in a timely manner. Typically such communication networks are administered in a manner that permits only one device or entity to communicate on a path at a time and devices typically have to compete for communication network resources. Usually the basic operating principle of such a system is the items first in are those first out (FIFO). The resulting “queuing” of information presents additional problems. As long as lower priority information, such as information related to non-critical activities (e.g., e-mail messages, etc.) is being transmitted on a communications network, successive higher priority information cannot be transmitted over the network.
A number of communication networks operate in an environment in which information is divided into segments or frames. Typically, one segment of information is transmitted at any given time and other frames wait in turn until the opportunity arises for them to be sent over the network. Data that is not sent is dropped or the device it originated from has to keep attempting to get it onto the network. Delays incurred while a device waits to obtain access to network resources increases the detrimental affects of queuing high priority traffic behind lower priority traffic. In addition to waiting for lower priority data to complete transmission, once high priority data reaches the top of the queue it must wait while network resources become available. Data comprising important information should be transmitted expeditiously in order to keep the communication network and components or devices coupled to it operating properly.
Peripheral devices typically require a certain minimal bandwidth or amount of critical information to be conveyed in a timely manner to maintain adequate operational performance. The more efficiently a communication network utilizes its limited resources the greater the probability it will be capable of addressing network control and peripheral component requirements. The efficiency of a communication system is determined by a number of factors. For example, a communication system's maximized utilization of its entire throughput or bandwidth capabilities greatly enhances the amount of information that is transmitted over a communication network in a specific period of time. An efficient communications network also has the ability to expeditiously transmit high priority data.
What is required is a system and method that provides access to communication network resources in an efficient and timely manner. The system and method should permit information transmissions to be aborted and facilitate the availability of communication network resources for other communications. The system and method should increase the probability that higher priority data in fixed length data communication frames is granted access to communication bandwidth expeditiously while minimizing impacts to communication flow and conserving communication network resources. For example, it should be applicable to existing communication networks in a manner that preserves the usefulness of communication protocols while minimizing adverse affects on network infrastructure.
SUMMARY OF THE INVENTION
The present invention is a system and method that provides access to communication network resource

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system to abort data communication traffic in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system to abort data communication traffic in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system to abort data communication traffic in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2965003

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.