Method and system of providing improved network management...

Electrical computers and digital processing systems: multicomput – Computer network managing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S201000, C709S202000, C709S224000, C707S793000

Reexamination Certificate

active

06477566

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to network management and particularly, although not exclusively to management of a communications network.
BACKGROUND OF THE INVENTION
A conventional communications network, for example a broadband communications network comprises a plurality of physical resources, eg switches, cross connects, regenerators, repeaters, transmission links such as fiber optic links or coaxial cable links, operating under control of a plurality logical resources, eg transport protocols, and local controls associated with individual physical resources. An example of a generic representation of a communications network is illustrated in
FIG. 1
herein, in which the physical resources are located at a plurality of nodes
100
and links
101
distributed over a geographical area. For a network operator to maintain control of a communications network for its operation, administration and maintenance, a management information base is maintained which stores information describing the physical and logical resources within the network. One or more management information bases may reside at a centralized location, eg a network controller
102
, or different information bases may be situated at a plurality of network controllers at different locations. The management information base contains data describing each individual network element in a communications network. A conventional communications network may comprise of the order of hundreds of individual network elements, eg switches, cross connects, regenerators, each of which contains of the order of tens to hundreds of cards, having processors, line terminations, buffers, registers, switch fabrics, etc. each card containing of the order of hundreds of individual components. In general, a conventional communications network may comprise a multitude of different legacy equipment types of different proprietary manufacture, each of which has its own particular internal configuration and offers its own specific capabilities.
The International Telegraph and Telephone Consultative Committee (CCITT) of the International Telecommunications Union (ITU) in their recommendation G.774 published September 1992 (available from International Telecommunication Union, General Secretariat, Sales Service, Place de Nation, CH 1211, Geneva 20, Switzerland), specifies a recommended architecture of an information model for synchronous digital hierarchy (SDH) networks. In recommendation G.774, there is specified a model which describes managed object classes and their properties which are useful for describing information exchanged across interfaces defined in recommendation M.3010, telecommunications network management (TMN) architecture, also of the ITU-T. Recommendation G.774 identifies the telecommunications management network (TMN) object classes required for the management of SDH network elements, and specializes the generic object classes presented in recommendation M.3010 to provide management information specifically for synchronous digital hierarchy. These objects are relevant to information exchanged across standardized interfaces defined in recommendation M.3010 TMN architecture. In recommendation G.774, network resources are modeled as objects and a management view of a resource is referred to as a managed object. Objects with similar attributes may be grouped into object classes. An object is characterized by its object class and object instance, and may possess multiple attribute types and associated values. Object classes defined in recommendation G.774 apply to various management areas, for example fault management and configuration management. However, the inventors have experienced that the ways in which information is conveyed in accordance with methods specified in recommendation G.774 have several inadequacies.
Firstly, under conditions of equipment start-up, large amounts of data are transferred across the network, using up capacity on the operation administration and maintenance (OAM) channels. For example, for a network element having a shelf containing 25 line cards, on start-up each line card transmits enrol data describing each of the termination points on that line card, as well as data describing the relationships between the termination points on that line card. Every time the shelf is started up, the same termination point enrol data and relationship data is transmitted across the OAM channel to the management information base. For successive start-ups of the shelf, the enrol procedure is repeated, transmitting the same information on every start-up. Similarly, on starting up an identical shelf, the same enrol data is transmitted to the management information base, every time that other shelf is started up. Thus, under conditions of network fault, when a plurality of network elements are restarted, the whole enrol procedure for each network element is repeated. However, the information transmitted is basically static, ie the same as the information which was transmitted last time the shelf was started up.
Some prior art systems have addressed the problem of large data volumes on the OAM channel by operating on a principle of Assumed Management Knowledge. In these cases, a network manager assumes that certain network elements have certain capabilities and that they operate in a particular way. This avoids having to explicitly elicit the actual information concerning the operation of the elements from the elements themselves, or from another source in the network, since obtaining such information would cause a high level of management traffic. One consequence of the assumed knowledge system is that assumptions may be erroneous and the network elements may operate in a way different to that assumed, leading to network management errors or less than optimal management of specific network elements, and of the network as a whole.
Secondly, the recommended management information model G.774, although providing for description of the content and configuration of a physical resource, does not adequately accommodate description of the capabilities of that physical resource. In particular, recommendation G.774 assumes potentially infinite flexibility of configuration of a described physical resource, whereas in practice there are practical limitations on the possible configurations of a resource. For example, physical resources may be subject to hard wired restrictions as a result of restrictions in an application specific integrated circuit (ASIC). Thus, irrespective of the way in which the physical resource is modeled in an information base, physical limitations on connectivity of the physical resource may exist. As an example, consider a physical resource having four ports numbered 1 to 4. Ports 1 and 2 may be capable of connecting with each other and to a further port, port 4. However, ports 1 and 2 may be incapable of connecting to port 3 due to a hard wired restriction on connectivity in the resource. However, recommendation G.774 does not provide a way of expressing such connectivity restriction, but assumes any port of the physical resource can be connected to any other port of the physical resource. Recommendation G.774 does not provide for description of such inherent capability restrictions in a physical resource.
SUMMARY OF THE INVENTION
One object of the present invention is to provide an improved means for initialization of a management information base upon start up of physical resources in a network.
Specific methods according to the present invention may provide a means of increasing a flow of management information between a plurality of network elements and a management system, but using a lower amount of data transfer between the network elements and the management information base.
Another object of the present invention is to provide a means of conveying information concerning capabilities of physical resources to a management information system.
Specific methods according to the present invention may provide a means of describing capabilities of a physical resource which encompa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system of providing improved network management... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system of providing improved network management..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system of providing improved network management... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919175

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.