Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control
Reexamination Certificate
2001-05-11
2003-12-02
Black, Thomas G. (Department: 3663)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle subsystem or accessory control
C701S301000, C342S069000, C342S072000, C280S731000, C280S732000, C280S733000
Reexamination Certificate
active
06658336
ABSTRACT:
TECHNICAL FIELD
The present invention relates to features in a vehicle for identifying objects and, more particularly, to a system for positively identifying the nature of an object, assessing the relationship between the object and the vehicle, and deploying responsive devices according to certain situations.
BACKGROUND OF THE INVENTION
Examples of typical vehicle responsive devices include inflatable air bag systems, seat belt systems with pyrotechnic pretensioners, bumper systems, knee bolster systems and the like. These systems can be resettable, meaning that deployment does not effect their continued operability, and non-resettable, meaning once deployed, replacement is necessary. Vehicle responsive devices that require activation or deployment are generally triggered by, and thus during, an actual physical impact event itself. That is, many vehicles utilize deploy systems that include impact sensors which are sensitive to abrupt changes in vehicle inertia or momentum, such as, for example, coil spring sensors, magnet-and-ball sensors, or MEMS (micro-electro-mechanical systems) devices including capacitive and/or piezoresistive accelerometer sensors, to activate or deploy vehicle responsive devices.
Research and development work is under way for “predictive collision sensing systems” that include multiple line-of-sight sensors which sense the close-range position and relative velocity of an object just before an imminent collision. Such sensors would be utilizable, for example, to activate a braking system and/or pre-arm an airbag system just prior to collision impact. In making the actual decision to activate and/or pre-arm such vehicle responsive devices, the position and velocity of the object relative to the vehicle, as determined by the system sensors, are utilized to predict the potential severity of the imminent collision. A drawback in such a system is that a prediction of the severity of an imminent collision based merely upon the relative position and velocity of the object, without identifying the nature of the object itself, often proves to be inaccurate.
SUMMARY OF THE INVENTION
The present invention provides a method of deploying responsive devices in a vehicle, such as an automobile, in anticipation of an impact with an object. Such an object may include, for example, a tree, a mailbox, a sign, a fire hydrant, a post, a pole, a fence, a guardrail, a building structure, or another vehicle. According to the present invention, the method basically includes the steps of using a sensor onboard a subject vehicle to identify an imminent collision between the subject vehicle and an object, directing and transmitting an elicitation signal to the object from the subject vehicle, receiving onboard the subject vehicle a response signal from the object providing information positively identifying the object, using the positive identification information to predict a severity level of the imminent collision, and in response, selectively deploying at least one responsive device onboard the subject vehicle according to the predicted severity level.
To implement such a method, the present invention also provides a system for deploying responsive devices in a vehicle in anticipation of a collision with an object. According to the present invention, the system basically includes, first of all, a sensor attachable to a subject vehicle. The sensor serves to identify an imminent collision between the subject vehicle and an object. In addition, the system also basically includes a first computer and a second computer electrically connected to both the sensor and the first computer. The first computer is dedicated to processing dynamics data for the subject vehicle, and the second computer is dedicated to predicting a severity level of the imminent collision. Further, the system also basically includes an antenna, attachable to the subject vehicle, and a transmitter, electrically connected between the second computer and the antenna. The transmitter serves to transmit an elicitation signal via the antenna to the object. Still further, the system also basically includes means for sending a response signal, from the object and to the subject vehicle, and a receiver for receiving the response signal via the antenna. The response signal sending means is situatable on the object, and the receiver is electrically connected between the antenna and the second computer. The response signal received from the object provides information positively identifying the object. In such a configuration, the second computer is electrically connectable to at least one responsive device onboard the subject vehicle and is capable of using the positive identification information to predict the severity level of the imminent collision and selectively deploy each responsive device according to the predicted severity level.
In a preferred embodiment of the present invention, the sensor is either an electromagnetic radar type sensor, a laser radar type sensor, or a pulsed infrared laser type sensor. In addition, the transmitter is preferably a wideband radio-frequency (RF) type transmitter capable of transmitting an elicitation signal which is an electromagnetic, modulated radio-frequency type signal having a wide frequency bandwidth. Further, the response signal sending means is preferably either an active or passive transponder or at least one reflector capable of sending a predetermined response signal to the subject vehicle, thereby providing information positively identifying the object. Still further, the receiver preferably includes at least one filter for obtaining the positive identification information from the response signal in the form of a predetermined digital code. The predetermined digital code is preferably used by the second computer to look up and access object-specific data from a memory associated with the second computer. In this way, the second computer uses the object-specific data to predict the severity level of the imminent collision.
Also, in a preferred embodiment of the present invention, the system may include at least one responsive device electrically connected to the second computer. In such a configuration, the second computer is capable of selectively communicating a deploy signal to each responsive device according to the predicted severity level. In this way, the deploy signal serves as an activation signal for each responsive device which is resettable, and the deploy signal serves as an enabling signal for each responsive device which is non-resettable. In such a preferred embodiment, a resettable responsive device may include, for example, a pre-tensionable seat belt, an extendable/retractable bumper, or an extendable/retractable knee bolster device. A non-resettable responsive device may include, for example, an inflatable airbag.
Further, in a preferred embodiment of the present invention, the system may include a global positioning system (GPS) device which is attachable to the subject vehicle and electrically connected to the first computer and/or the second computer. Such a global positioning system device is useful for obtaining subject vehicle position data and digital map data therefrom for use in providing information positively identifying the object.
Still further, in a preferred embodiment of the present invention, the system may include a communications device attachable to the subject vehicle and electrically connected to the first computer and/or the second computer. The communications device preferably includes, first of all, a communications antenna, attachable to the subject vehicle, and a transmitter, electrically connected between the communications antenna and the first computer and/or the second computer. The communications transmitter is preferably capable of transmitting an electromagnetic polling signal via the communications antenna to the object when the imminent collision is identified to thereby determine whether the object is another vehicle having another communications device onboard. In addition, the communications device also prefer
Altan Osman D.
Browne Alan Lampe
Wood Francis D.
Black Thomas G.
Mancho Ronnie
Marra Kathryn A.
LandOfFree
Method and system of cooperative collision mitigation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system of cooperative collision mitigation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system of cooperative collision mitigation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3119809