Method and system of an installer-friendly, modularly...

Electrical connectors – With supporting means for coupling part – Outlet box

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06558190

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrical box for providing electrical power to a building, and more particularly relates to an electrical box that enables efficient electrical wiring of a building using highly reliable electrical connection methods.
2. Discussion of the Background
In providing electrical power to commercial and residential buildings, a main power line typically carrying 100-200 Amps of 220VAC single phase power enters the building from an electric company power grid and is connected to a service box that distributes power to the entire building. In the service box, the 220VAC power is center tapped with a neutral return to provide two 110VAC sources of opposite polarity and ground terminal connected to the earth.
In the service box, power from the main power line is divided into branch circuits each of which typically provides 110VAC power circuit breakered at 15 to 25 Amps to several plugs, switches, and/or other electrical units located in different areas of the building. In providing such branch circuits, multi-conductor electrical cable must be routed from a branch circuit breaker in the main service box to electrical boxes that contain each of the electrical units in the branch circuit. The multi-conductor cable used to route the branch circuits typically includes a white insulation neutral wire, a black insulation hot wire, and a bare or green insulation ground wire to carry 110VAC throughout the building. In branch circuits, in which 220VAC are used, a red insulation alternative hot wire is also provided in the multi-conductor cable, and higher currents are allowed for certain high power appliances, such as stoves, ovens, air conditioners, heaters and clothes dryers.
Current practice in wiring a branch circuit is to route individual segments of the multi-conductor electrical cable from the interior of one electrical box to the interior of a subsequent electrical box in the circuit. When all electrical boxes are connected with cable segments, the free ends of the cable segments at the interior of each box are connected to complete the branch circuit. In completing the branch circuit, the outer insulation sheathing is first stripped off of each free end of cable to expose the internal electrical wires, and the insulation is then stripped off of the end of each wire to expose the copper conductor of the wire. The bare conductors of each wire are then connected by use of twist-on connectors or by connecting the conductor to a switch, plug, or other electrical unit in the box and the cables are folded within the interior of the box to make room for the electrical unit.
Similarly, when a new load, such as an electrical outlet is added to an existing electrical circuit, wires of the existing circuit must be spliced into and reconnected by use of the added load. Specifically, in adding a load, the electrician must first cut an opening in the finished wall to reveal the existing electrical cable which is then cut to provide two ends of the cable which are inserted into an electrical box used for housing the electrical outlet to be added. In situations whereby the electrical cable is not long enough that the ends of the cable can reach the interior of the new electrical box, it may be necessary for the electrician to install at least one junction box to extend the ends of the cable. The ends of the cable are then prepared and the internal wires are stripped as described above. The wire ends are reconnected through the electrical unit in the box to complete the circuit, and the wires are folded into the new box as discussed.
These conventional methods of wiring a building, however, present a number of problems to the electrician and homeowner. First, from the standpoint of the electrician, the effort it takes to cut and route cable segments between electrical boxes, and then to strip-and reconnect the internal wires of the cable using the above-described method is very time consuming and labor intensive. In addition, in installing a new electrical outlet, existing wires may have to be extended by use of a junction box requiring extra time. In addition, because multi-conductor electrical cables have three or four individually insulated conductors bound together by an outer sheathing, the cable is stiff and difficult to fold into the electrical box in such a way that plugs, switches, and other electrical units will have enough room to fit in the box. This creates greater inefficiency and makes it difficult for the electrician to sufficiently align all of the plugs and/or switches in a multi-ganged box so that a cover plate can be placed over the electrical unit and box.
In addition to the above-described efficiency problems, a significant amount of wire is wasted in routing all branch circuits from one main service box to each branch circuit region that the service box is to power. For example, providing power to the top floor of a large home may require two 15 Amp branch circuits in which case two multi-conductor electrical cables need to be routed from the main service box located in the basement, for example, to the area powered by each circuit. Distributed service panels that may resolve this problem have not been feasible in such situations due to their expense and large size that is not desirable for living space. Although to a lesser extent, electrical wire is also wasted when cable ends must be extended to reach the interior of a new electrical box when adding a load to an existing circuit.
From the home or building owner's standpoint, with the hundreds of electrical connections inside even a small house, the complicated method of cutting and stripping cables and internal wires as described above is likely to result in at least one poor connection that will eventually fail. The possibility of a poor connection is also present for the addition of new outlets. The failure of such a poor connection can be as benign as denying electrical service to all downstream electrical boxes in the circuit or as disastrous as causing a house to burn down. Moreover, nicking, or cutting into, of a conductor of each wire may occur each time insulation is cut off the wire to expose bare copper for the connection. This reduces the wire surface area available for carrying electrical current and can cause localized overheating, with the potential to start a fire. Reduced surface area may also cause a significant voltage drop that slows down motors, dims lights, or affects the operation of voltage sensitive appliances.
Finally, because the multi-conductor electrical cable enters each electrical box and must be folded within the box, space inside each electrical box is limited thereby limiting the number and sophistication of features offered by the electrical units used with the electrical box.
Based on the foregoing, there is a clear need for an electrical box that provides safe and reliable power to a home and/or commercial building.
There is also a need for an electrical box that allows electrical wires to be connected to an exterior surface of the electrical box without occupying space within the electrical box.
There is further a need for an electrical box that allows electrical wires to be connected to the electrical box with minimal cutting and stripping of insulation from the electrical wires.
Finally, there is a need for an electrical box that accepts large electrical units having sophisticated functions and allows easy alignment of electrical units within the electrical box so that a decorative cover can be attached to the electrical box.
SUMMARY OF THE INVENTION
According to one aspect of the invention, an electrical box is provided which includes a hollow container having an open end, an interior surface defining an interior space, and an exterior surface. A neutral connector and a hot connector are mounted on exterior bus bars mounted on the exterior surface of the container and are configured to receive the neutral and hot wire respectively of a multi-conductor electrical cable. A neutral conductive mem

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system of an installer-friendly, modularly... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system of an installer-friendly, modularly..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system of an installer-friendly, modularly... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3041809

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.