Method and system for using personal digital assistants with...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06475146

ABSTRACT:

BACKGROUND
Advances in medical diagnostic technology, and especially in medical diagnostic imaging technologies such as ultrasound, have significantly increased the effectiveness and diagnostic benefits of such technology. However, these advances have also resulted in large ultra-complex devices which are often difficult to physically manipulate and complicated to operate in the clinical setting.
While advances in user interface technologies and miniaturization of electronics have somewhat alleviated these complications, these advances have often facilitated adding even more functionality to new devices rather than simplifying and shrinking existing devices. In the medical environment, this is not necessarily undesirable as clinical space is typically at a premium and the more diagnostic capabilities that can be provided from a single device, the better. Unfortunately, such complexity burdens the clinician who must utilize these devices and technicians who must maintain them.
Further, while increasing the functionality and effectiveness of medical imaging devices, these advances have further significantly reduced the overall operating costs and the related costs to the patient or health insurer. As with any product where cost decreases, supplies and demand have correspondingly increased. This has changed medical imaging from an expensive procedure reserved for those most critically ill to a routine procedure and critical evaluation tool available to benefit any patient for both diagnostic and preventative uses.
This has further resulted in a change in the clinical environment in which such examinations are performed. The past high cost and complexity of such exams dictated that they needed to be performed in a hospital setting by highly trained clinicians or even a radiologist. With the decreasing cost of the medical imaging systems themselves, overall costs now focus on the expense of providing personnel to operate these systems. Commonly, routine medical imaging examinations are performed by nurses or imaging technicians, such as sonographers, or other lower cost personnel. Often the exam is performed and distilled into a report by the nurse or technician and sent to a radiologist for review.
Even the clinical setting of medical imaging has changed. In the past, only hospitals could afford to purchase and operate advanced medical imaging equipment. Today, such systems may be available even in small clinical settings and independent imaging clinics are commonly available for such examinations. In such settings, business considerations, such as efficiency, patient throughput, system utilization and personnel costs become significant concerns. These concerns are paired with the concerns for safe, accurate and complete examination and diagnosis.
Accordingly, there is a need to simplify the use and maintenance of medical diagnostic imaging systems while increasing the functionality of the systems and the effectiveness of the diagnostic examinations performed with them.
SUMMARY
The present invention is defined by the following claims, and nothing in this section should be taken as a limitation on those claims. By way of introduction, the preferred embodiments described below relate to a medical diagnostic imaging system for use with a personal digital assistant. The medical diagnostic imaging system comprises a transmitter, a receiver, a transducer coupled with the transmitter and receiver and a processor coupled with the transmitter and receiver. The processor is operative to control the transmitter and receiver and generate medical diagnostic imaging data representative of the operation thereof. The system further includes a first user interface coupled with the processor and operative to allow a user to perform at least one of a first set of control functions on the imaging system. In addition, the system includes a personal digital assistant (“PDA”) interface coupled with the processor and operative to externally couple a PDA with the imaging system. The PDA comprises a second user interface operative to allow a user to perform at least one of a second set of control functions on the imaging system, the PDA interface being further operative to receive input data from the PDA and transmit output data to the PDA.
The preferred embodiments further relate to a method of using a personal digital assistant with a medical diagnostic ultrasound imaging system, the system comprising a processor, a first user interface coupled with the processor and a personal digital assistant (“PDA”) interface coupled with the processor. In one embodiment, the method comprises controlling the imaging system and generating medical ultrasound imaging data representative of the operation thereof, performing at least one of a first set of control functions on the imaging system via the first user interface, coupling, externally, a PDA with the imaging system via a personal digital assistant (“PDA”) interface coupled with the first user interface and the processor, the PDA comprising a second user interface, performing at least one of a second set of control functions on the imaging system via the second user interface, receiving input data by the PDA interface from the PDA, and transmitting output data by the PDA interface to the PDA.
Further aspects and advantages of the invention are discussed below in conjunction with the preferred embodiments.


REFERENCES:
patent: 5957846 (1999-09-01), Chiang et al.
patent: 5964709 (1999-10-01), Chiang et al.
patent: 6032120 (2000-02-01), Rock et al.
patent: 6106472 (2000-08-01), Chiang et al.
patent: 6195564 (2001-02-01), Rydbeck et al.
patent: 6252544 (2001-06-01), Hoffberg
Science Daily Magazine, posted Jul. 11, 2001 “High Tech and High Touch: Wireless Technology Enables Physicians to Access Patient Updates from Anywhere, Anytime”, obtained at http://www.sciencedaily.com/releases/2001/07/010711060108.htm, on Jul. 30, 2001, pp. 1-4.
Michael Bartlett, Newsbytes®, posted Aug. 8, 2001, “Doctors Will Learn To Love Handhelds, Eventually—Study”, obtained at http://www.newsbytes.com/cgi-bin/udt/im.display.printable?client.id=newsbytes&story.id=168847, Aug. 9, 2001 pp. 1-2.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for using personal digital assistants with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for using personal digital assistants with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for using personal digital assistants with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.