Method and system for the storage and retrieval of web-based...

Data processing: presentation processing of document – operator i – Presentation processing of document – Layout

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S215000

Reexamination Certificate

active

06789228

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention generally relates to a data processing system for digitally recording lectures and presentations. More particularly, it relates to the conversion of these lectures with little intervention to a standard Internet format for publication.
2. Related Art
The majority of corporate and educational institution training occurs in the traditional lecture format in which a speaker addresses an audience to disseminate information. Due to difficulties in scheduling and geographic diversity of speakers and intended audiences, a variety of techniques for recording the content of these lectures have been developed. These techniques include videotapes, audio tapes, transcription to written formats and other means of converting lectures to analog (non-computer based) formats.
More recently, with the advent and growing acceptance of the Internet and the World Wide Web, institutions have started to use this communication medium to broadcast lectures. Conventionally, in order to create a Web-based lecture presentation that utilizes 35-mm slides or other projected media and that includes audio, a laborious process is necessary. This process involves manually removing each slide and digitizing it and manually recording and digitizing the audio into a Web-based format. In addition, to complete the lecture materials, each slide must be manually synchronized with the respective portion of audio. Thus, the entire process of converting a lecture into a format that can be published on the Internet is labor intensive, time-consuming and expensive.
One technological challenge has been allowing audio/visual media to be made available on relatively low bandwidth connections (such as 14.4 kilobits/second modems). Native audio and visual digital files are too large to receive in a timely manner over these low bandwidth modems. This technological challenge becomes prohibitive when one attempts to transmit a lecture over the Internet, which requires slide updates while maintaining simultaneous audio transmission. To this end, Real Networks™, Microsoft™, VDOlive™ and several other companies have pioneered and commercialized a variety of techniques which allow for continuous, uninterrupted transmission of sound and images over the Internet, even over low bandwidth connections. This format, known as “streaming”, does not require the end-user to obtain the entire audio or video file before they can see or hear it. Recently, Microsoft has provided a standard media format for Web-based multimedia transmission over the Internet. This standard is called the “Active Streaming Format” (ASF). The ASF Format is further described at the Internet website http://www.microsoft.com/mind/0997
etshow
etshow.htm, which is incorporated herein by reference.
Furthermore, a variety of manufacturers (e.g., Kodak, Nikon, AGFA) have developed technologies for scanning 35-mm slides and digitizing them. However, these systems have several disadvantages. Most significantly, they require removal of the slides from a slide carousel. Additionally, they require a separate, time-consuming scanning process (on the order of several seconds per slide), and as a result, a lecturer cannot use the scanners when giving a presentation due to the delay of scanning each slide independently. Even further, they are not optimized for capturing slide information for the resolution requirements of the Internet. These requirements are generally low compared with typical slide scanners, since smaller file size images are desired for Internet publishing. Finally, they are not designed to capture audio or presentation commands (such as forward and reverse commands for slide changes).
One device recently introduced to the market under the name “CoolPix 300™” (available from Nikon of Melville, N.Y.) allows for digital video image and digital audio capture as well as annotation with a stylus. However, the device does not permit slide scanning and does not optimize the images and audio for use on the Internet. Its audio recording is also limited to a relatively short 17 minutes. Similarly, digital audio/video cameras (such as the Sony Digital Handycam series) allow for the digital video and audio recording of lectures but have no direct means of capturing slides. In addition, they are not set up to record information in a manner that is optimized for the Internet. Generally, with these systems, the amount of audio captured is limited to about one hour before a new cassette is required to be inserted into the camera.
Although these conventional techniques offer the capability to transmit educational materials, their successful deployment entails significant additional manual efforts to digitize, synchronize, store, and convert to the appropriate digital format to enable use on the Internet. Adding to the cost and delay, additional technical staff may be required to accomplish these goals. Furthermore, there is a time delay between the lecture and its availability on the Internet due to the requirement that the above processes take place. As such, the overall time required for processing a lecture using conventional methods and systems is five to ten hours.
Another related technology for storing, searching and retrieving video information is called the “Infomedia Digital Video Library” and is developed by Carnegie Mellon University of Pittsburgh, Pa. However, the system under consideration will use previously recorded materials for inclusion into the database and thus makes no provisions for recording new materials and quickly transferring them into the database. Moreover, in this effort, there was no emphasis on slide-based media.
It is therefore desirable to provide a system that allows a presenter to store the contents of a lecture so that it may be broadcast across the Web. It is further desirable to provide a system that allows the efficient searching and retrieval of these Web-based educational materials.
SUMMARY
Methods and systems consistent with the present invention satisfy this and other desires by optimizing and automating the process of converting lecture presentations into a Web-based format and allowing for the remote searching and retrieval of the information. Typically, systems consistent with the present invention combine the functionality of a projection device, a video imaging element, an audio recorder, and a computer. Generally, the computer implements a method for the conversion and enhancement of the captured lectures into a Web-based format that is fully searchable, and the lecture can be served immediately to the Internet.
A method is provided for recording and storing a lecture presentation using slides and audio comprising the steps of initiating display of a slide image, capturing slide image data from the slide image automatically in response to the initiation and storing the slide image data in a memory. The method may further include the steps of recording audio signals associated with the slide image, capturing audio data from the audio signals, and storing the audio data in a memory.
The advantages accruing to the present invention are numerous. For example, a presenter of information can capture his or her information and transform it into a Web-based presentation with minimal additional effort. This Web-based presentation can then be served to the Internet with little additional intervention. The nearly simultaneous recording, storage and indexing of educational content using electronic means reduces processing time from more than five hours to a matter of minutes. Systems consistent with the present invention also provide a means of remotely searching and retrieving the recorded educational materials.
In one implementation, optical character recognition and voice recognition software can be run on the slide data and audio recordings to produce transcripts. Using additional software, these transcripts can be automatically indexed and summarized for efficient searching.
The above desires, other desires, features, and advantages of the present invention will be readily appreci

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for the storage and retrieval of web-based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for the storage and retrieval of web-based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for the storage and retrieval of web-based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225268

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.