Method and system for software updating

Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Of centralized switching system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S029080, C714S038110, C714S703000, C717S168000, C717S173000

Reexamination Certificate

active

06658090

ABSTRACT:

SCOPE OF THE INVENTION
The invention relates to telecommunication. In particular, the invention relates to a new and advanced method and system of software updating in a network element of a telecommunication network.
PRIOR ART
A telecommunication network, such as a telephone network typically comprises one or more network elements. A network element is herein used to mean a telecommunications system or a group of systems or a part of a system as well as its peripheral equipment or some other unit in a telecommunication environment that may be managed, monitored or controlled in the network and that has at least one standard interface. A typical example of a network element is a digital telephone exchange. The network element may be divided into two parts: the software and the hardware. Just like any other software configuration, also the software of a network element requires updating every now and then, whether it might be, e.g. for the correction of the programming errors or for the adding of new features. The requirements for the updating process of a network element are, at any rate, remarkably stricter than when updating, e.g. a software of a personal computer.
For example, a modern telephone exchange is a complex entity whose uninterrupted function is a matter of extreme importance for the clients of the operator maintaining it. When updating a piece of software, a new software version is attempted to be tested before its introduction in a most thorough way in order to be able to detect the possible errors before they manage to cause interference to telephone traffic. In addition, the introduction phase of a new piece of software should not cause very much interference to the connections of the network element nor to the function of the network element in general.
Software updates may be divided into two main groups. One group includes so-called minor software updates, characterised in the compatibility of the software with the original software. An example of this is, e.g. a CD update (Change Delivery, CD). The other group includes so-called major software updates, characterised in the incompatibility of the software with the original one. The problems described hereinafter with the solutions presented relate in particular to the major software updates, but the method and system in accordance with the invention may be used also in conjunction with the minor software updates.
Nowadays it is possible to carry out different tests to a new software version before its introduction. Usually the units of the network element are divided into an original side being the ones responsible for the normal traffic of the relevant network element, whereas the units of the testing side are used for the testing of the new software version. An example of the tests that may be carried out are, e.g. alarms. If the alarm system is able to print alarms from the units operating with the new software, so the new software is operational as concerns this part, because specifically the application programs are responsible for the generation of the alarms also in normal activities. In addition, known is a way of giving different commands in the MML language (Man Machine Language, MML), such as printing commands which help to authenticate the data converted from the old software into the new one. Moreover, the download of a new piece of software into a unit is itself a previously known, important test.
An enormous problem associated is, however, that the carrying out of test connections is not possible. One reason for this is that the present network element architectures are not provided with a redundant interface unit that are needed on the testing side in order to establish the test connections. Since the redundant switching field unit to test is not provided with an interface unit connected to it, the switching field unit in question cannot be used for test connections. In other words, the test connections cannot be established because the interface units are not doubled and because both of the units cannot be active at the same time. At any rate, a test connection would be the most comprehensive and efficient way of ensuring the compatibility and effectiveness of a new software packet.
The introduction of a tested software found to be well-operating is nowadays carried out usually with a certain command given in the MML language (Man Machine Language, MML) One known method for the introduction of a new piece of software is as follows: the network elements are logically divided into an original side and testing side. The units of the original side transmit traffic using the original software. In the units of the testing side, a new piece of software is introduced. The units of the testing side begin to transmit traffic using the new software. In case there are no problems occurring, the units of the testing side are finally accepted for use, and the division is eliminated. In other words, the units that belonged to the testing side now carry on transmitting traffic, and the units that belonged to the original side are changed, e.g. into standby units. The introduction is carried out relatively fast, typically in about five minutes. The problem associated, is however, that in conjunction with the introduction of a new piece of software the existing connections of the network element in question are interrupted. The reason for the disconnection of connections is the fact that the interface units are rebooted and transferred from the computer units operating with the old software as well as from the switching field units into the corresponding units operating with the new software. The new units are not heated from the point of view of the connections, and in the units in question the establishing of connections is restarted from the beginning as soon as the units are ready to receive connection requests.
In addition, known is a way of introducing a new piece of software by rebooting the whole system. This method is, however, very slow, taking approximately typically about 10-15 minutes.
The aforementioned problems are therefore to a great extent due to the structural solutions of the present network elements. However, e.g. the ATM technique brings along the network elements of the next generation thus enabling the solving of the present problems. The following section includes a brief description of the features of the ATM technique that in some way or another touch upon the invention.
ATM (Asynchronous Transfer Mode, ATM) is a connection-oriented packet-switched transfer method which is characterised in a data transfer using cells of standard length. The cells consist of a five bit long title and a 48 bit long information part. The title fields comprise a virtual path identifier VPI and virtual channel identifier VCI, a payload type identifier PTI, cell loss priority, CLP and header error control, HEC that makes it possible to correct errors of one bit and detect errors of two bits. In the ATM switch, the cells are transferred from the logical input channel into one or more logical output channels. The logical channel consists of the number of a physical link, such as an optical fibre and the channel identifier on this link, i.e. the VPI/VCI information. One physical medium of transmission, such as an optical fibre may include several virtual paths VP, and each virtual path may include several virtual channels VC.
Since the cells are of standard size, the switching in the ATM switches may be carried out based on the cell header at device level and therefore extremely fast. The cells belonging to different connections are distinguished from each other with the aid of the virtual path and virtual channel identifiers. When establishing the connection, a fixed route is defined through the network, i.e. a virtual connection along which the cells of the connection are route. In the network nodes, the cells are switched based on the VPI/VCI values. The VPI/VCI values of the cells are connection-slot-oriented and therefore tend to change in conjunction with the switching of a VP or VC level. In the end

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for software updating does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for software updating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for software updating will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3115082

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.