Method and system for representing chemical structural formulae

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S012000, C707S793000, C707S793000, C705S002000

Reexamination Certificate

active

06708882

ABSTRACT:

The present invention concerns a method of representing chemical structural formulae on a display device by means of a chemical symbol or graphic program for producing chemical structural formulae.
Corresponding symbol programs have already long been known. Symbols programs of that kind generally have a set of basic structural elements of chemical structural formulae, wherein each of those structural elements can be moved to or produced at a desired position on a display screen. In that situation the area of a corresponding display device which can be for example a display screen or a printed surface is generally divided into equal surface elements and at least one structural element, for example a line of a single bond or a double line for a double bond is associated in a given spatial orientation in each surface element. The structural elements are also generally rotatable and/or displaceable within the surface element so that structural elements of adjacent surface elements can always be suitably fitted together. The individual surface elements can possibly also be rotatable in their entirety.
The basic structural elements for corresponding symbol programs which are used almost exclusively in the area of organic chemistry are therefore single, double or triple bonds in the form of a single, double or triple line, the ends of which respectively define the position of the ions or atoms which are connected in that way. In that respect a plurality of corresponding lines may also be joined together at predetermined angles or also with short interruptions, but in that case corresponding symbol programs are generally restricted to affording a few basic structures in the form of complex structural elements, for example a so-called benzene ring, that is to say the structure of a regular hexagon with alternate double and single bonds. Admittedly, any chemical structures can be composed therefrom by the addition of further bonding lines, but such more complex structures are generally not available from the outset as fundamental structural elements.
In that respect, in accordance with a normal convention, the carbon atoms which are possibly present at the ends of the bonds or bonding lines are not expressly identified, in other words, where two lines, without being identified in greater detail, meet with a short interruption or at an angle <180°, there is a respective carbon atom. If however other elements such as nitrogen, hydrogen, oxygen or sulphur or also molecules form the termination of a bonding line, then the ends of such lines are identified with suitable letter identifications, corresponding to the usual chemical nomenclature.
In the synthesis of new chemical compounds in chemical research and development but in part also in the analysis of given substances, corresponding chemical structural formulae are an essential aid for the chemist as he can recognise which parts of a chemical structure are in any way available for a reaction with other substances or components, by reference to the structural formula, substantially better than by reference to a corresponding sum formula or a chemical identification, even if it is a precise one. In that way desired compounds or structures can be synthesised substantially more easily and in a more specific and targeted fashion and existing structures are identified substantially more easily on the basis of their fragments or also on the basis of their reaction behaviour.
In that respect the procedure in chemical research is generally such that structural formulae are noted for starting substances (educts) and a product which possibly results therefrom. As corresponding research results must also be archived and documented, in regard to the presentday demands on documentation and accessibility and searchability of corresponding results, it is necessary for the corresponding reaction equations to be electronically stored if possible with the structural formulae. It will be appreciated that the symbol or graphic programs which already exist for producing chemical structural formulae are in principle the appropriate instrument.
However the preparation of corresponding reaction equations or the individual educts and products on the display screen is a procedure which is often expensive, tedious and involved if the structures of the chemical educts and products are correspondingly extensive and complicated. More specifically, in that case very many individual basic elements which the chemical symbol program offers are put together piece by piece. That requires a relatively great amount of time and also entails a serious source of error as it is certainly possible for individual structural elements, by mistake, to be omitted, added or inserted at a wrong position or in a wrong orientation.
In comparison with that state of the art the object of the present invention is to provide a method and a corresponding system for representing chemical structural formulae on a display device, by means of which the preparation of chemical reaction equations, on the basis of structural formulae, is substantially simplified.
In regard to the method that object is attained in that codings are allocated to known or newly synthesised chemical substances, that the codings are stored in a memory which can connect to the symbol program, wherein in relation to each code of a chemical substance the associated structure or a program routine for production of the structure are also stored, and that the code is applied in a readable or machine-readable form to an article with unequivocal association with the substance so that from there it can be inputted into a computer on which the symbol program is running, wherein by virtue of the input of the code the representation of the corresponding structure on the display device can be triggered.
In the case of this method therefore the chemist himself does not have to compose the structural formula of a chemical substance as a laborious piece of detailed work on the basis of a chemical identification and a sum formula, but he merely inputs a code associated with the substance into a suitable computer, in which case then, by virtue of the symbol program, the complete structure of that substance is either called up from a memory or produced by a program routine associated with the code.
It will be appreciated that the code must be present in some readable form so that it can be inputted into the computer, in which respect the term ‘readable’ is used to mean both codings which are readable by people and also machine-readable, such as for example the known bar codes, or also a coded storage in magnetic form on a magnetic strip or also on corresponding optical storage devices. Machine plain text readers which can correctly read digits printed on a surface would certainly also be considered. Input of the code can also be again considerably simplified by the use of a suitable reading device, so that within fractions of a second the desired structure for example appears on a display screen, can be printed out or is made available in some other manner for representation.
In that respect it will be appreciated that it is desirable if the code is applied to a container of a chemical substance, to a label relating thereto, an instruction leaflet or list of contents, or a table work. It would therefore be desirable if in a chemical laboratory any container in which a chemical substance is stored which is involved as an educt of a chemical reaction is provided with a suitable coding printed thereon. In that respect for example it is possible for article numbers which are already present in any case and which unequivocally identify a chemical substance to be used as codings. As already mentioned bar codes can also be printed on a container or a label applied to the container. If necessary however it is also possible to provide a table work which, besides a normal chemical identification of a substance, also specifies a corresponding coding, for example in the form of a bar code, so that it is only necessary to pass a reading pen or the li

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for representing chemical structural formulae does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for representing chemical structural formulae, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for representing chemical structural formulae will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.