Method and system for reducing lean-burn vehicle emissions...

Power plants – Internal combustion engine with treatment or handling of... – By means producing a chemical reaction of a component of the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S274000, C060S285000, C060S297000

Reexamination Certificate

active

06487853

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to methods and systems for the treatment of exhaust gas generated by “lean burn” operation of an internal combustion engine which are characterized by reduced tailpipe emissions of a selected exhaust gas constituent.
2. Background Art
Generally, the operation of a vehicle's internal combustion engine produces engine exhaust that includes a variety of constituent gases, including carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO
x
). The rates at which the engine generates these constituent gases are dependent upon a variety of factors, such as engine operating speed and load, engine temperature, ignition (“spark”) timing, and EGR. Moreover, such engines often generate increased levels of one or more constituent gases, such as NO
x
, when the engine is operated in a lean-burn cycle, i.e., when engine operation includes engine operating conditions characterized by a ratio of intake air to injected fuel that is greater than the stoichiometric air-fuel ratio, for example, to achieve greater vehicle fuel economy.
In order to control these vehicle tailpipe emissions, the prior art teaches vehicle exhaust treatment systems that employ one or more three-way catalysts, also referred to as emission control devices, in an exhaust passage to store and release selected exhaust gas constituents, such as NO
x
, depending upon engine operating conditions. For example, U.S. Pat. No. 5,437,153 teaches an emission control device which stores exhaust gas NO
x
, when the exhaust gas is lean, and releases previously-stored NO
x
when the exhaust gas is either stoichiometric or “rich” of stoichiometric, i.e., when the ratio of intake air to injected fuel is at or below the stoichiometric air-fuel ratio. Such systems often employ open-loop control of device storage and release times (also respectively known as device “fill” and “purge” times) so as to maximize the benefits of increased fuel efficiency obtained through lean engine operation without concomitantly increasing tailpipe emissions as the device becomes “filled.”
The timing of each purge event must be controlled so that the device does not otherwise exceed its capacity to store the selected exhaust gas constituent, because the selected constituent would then pass through the device and effect an increase in tailpipe emissions. Further, the timing of the purge event is preferably controlled to avoid the purging of only partially filled devices, due to the fuel penalty associated with the purge event's enriched air-fuel mixture. Moreover, when plural emission control devices are deployed in series, excess feedgas HC and CO during the purge event are typically initially consumed in the upstream device to release stored oxygen, whereupon the excess feedgas HC and CO ultimately “break through” the upstream device and enter the downstream device to thereby effect a both an initial release of oxygen previously stored in the downstream device and then a release of stored selected exhaust gas constituent.
The prior art has recognized that the storage capacity of a given emission control device is itself a function of many variables, including device temperature, device history, sulfation level, and the presence of any thermal damage to the device. Moreover, as the device approaches its maximum capacity, the prior art teaches that the incremental rate at which the device continues to store the selected constituent, also referred to as the instantaneous efficiency of the device, may begin to fall. Accordingly, U.S. Pat. No. 5,437,153 teaches use of a nominal NO
x
-retaining capacity for its disclosed device which is significantly less than the actual NO
x
-storage capacity of the device, to thereby provide the device with a perfect instantaneous NO
x
-absorbing efficiency, that is, so that the device is able to absorb all engine-generated NO
x
as long as the cumulative stored NO
x
remains below this nominal capacity. A purge event is scheduled to rejuvenate the device whenever accumulated estimates of engine-generated NO
x
reach the device's nominal capacity. Unfortunately, however, the use of such a fixed nominal NO
x
capacity necessarily requires a larger device, because this prior art approach relies upon a partial, e.g., fifty-percent NO
x
fill in order to ensure retention of engine-generated NO
x
.
The amount of the selected constituent gas that is actually stored in a given emission control device during vehicle operation depends on the concentration of the selected constituent gas in the engine feedgas, the exhaust flow rate, the ambient humidity, the device temperature, and other variables including the “poisoning” of the device with certain other constituents of the exhaust gas. For example, when an internal combustion engine is operated using a fuel containing sulfur, the prior art teaches that sulfur may be stored in the device and may correlatively cause a decrease in both the device's absolute capacity to store the selected exhaust gas constituent, and the device's instantaneous constituent-storing efficiency. When such device sulfation exceeds a critical level, the stored SO
x
must be “burned off” or released during a desulfation event, during which device temperatures are raised above perhaps about 650° C. in the presence of excess HC and CO. By way of example only, U.S. Pat. No. 5,746,049 teaches a device desulfation method which includes raising the device temperature to at least 650° C. by introducing a source of secondary air into the exhaust upstream of the device when operating the engine with an enriched air-fuel mixture and relying on the resulting exothermic reaction to raise the device temperature to the desired level to purge the device of SO
x
.
Thus, it will be appreciated that both the device capacity to store the selected exhaust gas constituent, and the actual quantity of the selected constituent stored in the device, are complex functions of many variables that prior art accumulation-model-based systems do not take into account. The inventors herein have recognized a need for a method and system for controlling an internal combustion engine whose exhaust gas is received by an emission control device which can more accurately determine the amount of the selected exhaust gas constituent, such as NO
x
, stored in an emission control device during lean engine operation and which, in response, can more closely regulate device fill and purge times to optimize tailpipe emissions.
SUMMARY OF THE INVENTION
Under the invention, a method is provided for controlling an engine operating over a range of operating conditions including those characterized by combustion of air-fuel mixtures that are both lean and rich of a stoichiometric air-fuel ratio, and wherein exhaust gas generated during engine operation is directed through an exhaust purification system including an upstream emission control device and a downstream sensor operative to generate an output signal representing a concentration of reductants, i.e., excess hydrocarbons, in the exhaust gas exiting the device. The method includes determining a first value representing a cumulative amount of a selected constituent of the engine feedgas, such as NO
x
, generated during an engine operating condition characterized by combustion of an air-fuel mixture lean of the stoichiometric air-fuel ratio (“a lean operating condition”). The method also includes determining a second value representing an instantaneous capacity of the device to store the selected constituent, wherein the second value is determined as a function of a characteristic of the output signal generated by the reductant sensor during an engine operating condition characterized by combustion of an air-fuel mixture having an air-fuel ratio rich of the stoichiometric air-fuel ratio (“a rich air-fuel ratio”), and a predetermined reference value. The method further includes selecting an engine operating condition as a function of the first and second values.
More specifically, in a preferred embodiment

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for reducing lean-burn vehicle emissions... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for reducing lean-burn vehicle emissions..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for reducing lean-burn vehicle emissions... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2986330

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.