Method and system for recognition of currency by denomination

Check-actuated control mechanisms – Control mechanism actuated by check – other than coin – which... – By pliant currency

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C209S534000, C250S559050, C250S559420, C382S135000

Reexamination Certificate

active

06234294

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The invention relates to methods and apparatus for detecting currency note condition and to currency counting methods and machines, in which a total value of the currency is determined by counting notes of various denominations that may be word, soiled or skewed as they pass through a currency counting machine.
2. Description of Background Art
Many existing currency counting machines determine only the piece count of the currency (i.e., “x” number of bills), leaving it up to the operator to infer the monetary value of the currency being counted. An automated method of determining the denomination of paper currency is a valuable addition to these currency counting machines. With such an automated method, the ease, speed, and accuracy of financial transactions can be increased, thereby increasing the likelihood of detecting both human error and fraud.
United States currency presents unique challenges for denomination recognition by automated methods. Unlike most other currencies, every denomination of currency is printed using the same colors and types of inks, and the physical size of every denomination is likewise identical. As a result, neither the length, width, nor color of a piece of United States currency offers any information regarding that piece's value.
Further challenges arise when attempting to integrate a denomination recognition method into high speed currency counting machines. Typically, the side-to-side position (lateral displacement), orientation (face up or down, top edge leading or trailing), angular skew, and velocity of transport of the notes are poorly controlled.
A light transmissive technique for denomination recognition is disclosed in Kurosawa et al., U.S. Pat. No. 5,542,518. In Kurosawa et al., the image data is processed using a technique involving hyperplanes to separate image data vectors for respective pairs of denominations into two regions. The scanned image data vector is then compared to see which of the two vector regions it is in relative to the hyperplane, and the denomination corresponding to image data in the opposite vector region is discarded. By making several sets of comparisons with image data separated by hyperplanes, the scanned image data is finally identified as being most like one other set of image data for a specific denomination.
The above system limits scanning to specific areas of the note, and thus the above-described recognition system is inherently sensitive to how the note is fed (i.e., the note's lateral position and skew) and note damage.
The above-described recognition system also utilizes hyperplanes (a subset of all correlation techniques) in combination with a binary search technique to determine the category matching the target note. This technique varies from traditional neural networks in which hyperplanes are used in conjunction with other elements to resolve the system in one pass with a higher degree of confidence.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, a method of detecting the condition of a currency note transported along a path of travel, may include obtaining data from regions expected to define pixels of the note, testing each pixel to detect absence of note material, and when an absence of note material is detected, setting the pixel data to a neutral value, and computing the total area of all pixels set to the neutral value. Therefore, if the total area of all pixels is greater than a first predetermined value, the note is rejected.
In accordance with a second aspect of the present invention, a method of detecting the condition of a currency note transported along a path of travel, may include detecting an amount of light passing through or reflected by the note, and adjusting the amount of light detected based on a specific currency denomination. Therefore, if the adjusted amount of light passing through or reflected by the note is less than a predetermined value, the note is rejected.
The first aspect of the invention enables physical damage to the note to be detected while the second aspect of the invention allows soil effects etc. to be detected.
The invention is particularly suited for use in the detection of note denomination.
The information about the note can be obtained by interrogating it under reflective or transmissive conditions. In the remainder of the specification, the use of transmitted light will be assumed.
In one example, the invention is practiced as a method of detecting the denomination of a currency note transported along a path of travel, including the steps of receiving skew and position data detected by external sensors for sensing the position of the note; assembling a first data image of pixel data representing a two-dimensional image of substantially all of the note while averaging the pixel data into groups of pixel data for further processing; adjusting the first data image to remove the skew; and relating the first data image to a plurality of predefined images according to a mathematical finction to determine whether the data image can be classified as matching any one of the predefined plurality of data images for a specific currency denomination.
Preferably, the invention uses a system of “big” pixels to average the data and to reduce image processing time. Data for the individual pixels, which has been converted from individual analog signals, are grouped in arrays of 3×3 individual pixels to become “big” pixels. An array of 30×11 big pixels substantially covers the area of a note.
In order to achieve the lowest possible unknown and missidentify rates, a further step was developed to minimize the effects of normal note damage. In this step, each of the pixels in the interior area of the note image is checked for an unattenuated signal which denotes the absence of intervening material, i.e., open space. If an open space is detected, (i.e., signifying a hole or tear) that component of the image ignored by setting it to a neutral value. This method creates stable image data with decreased sensitivity to anomalies in the note such as holes, tears, and oil stains thereby significantly improving recognition rates when running teller quality currency.
The recognition technique utilized preferably employs a calculated accuracy estimate (relative entropy) for each category in combination with a empirically determined threshold to set minimum requirements for a “good” match. This technique allows tuning of the recognition system based on end user requirements and external conditions such as note quality.
The fitness technique utilized by the invention performs a hole test to locate any air pixels, calculates the total area of the hole pixels and determines whether the total area of any holes in the note exceeds a predetermined threshold. If the note fails the hole test, it is rejected. If the note passes the hole test, a soil test is performed. In the soil test, the average transmissivity is calculated and normalized according to a particular denomination. If the note fails the soil test the note is rejected. Otherwise, the note passes the fitness test and may be further processed.
To achieve the required note per minute processing requirements for the banking industry, preferably a method for handling negative skews is used to allow processing to occur while the note was passing over the image sensor. This technique utilizes mirror symmetry to change the reference point for the pattern based on the direction of note skew. A note with negative skew is scanned as if it were flipped over, allowing the image of the negatively skewed note to be scanned in real time. Without this technique processing would be delayed until the note completely passed the image sensor, thus delaying response of the system and decreasing throughput.
A technique for calibrating the image sensors is also provided. The technique adjusts the overall LED power, the gains on each photodiode, and performs a secondary two point calibration to calculate the factors required to perform the necessa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for recognition of currency by denomination does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for recognition of currency by denomination, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for recognition of currency by denomination will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2460920

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.