Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
1999-04-02
2002-07-02
Grant, William (Department: 2121)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S100000
Reexamination Certificate
active
06415194
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to computer systems and methods used in manufacturing resource planning, and, more particularly, to a computer system and method for determining the daily demand for raw materials and other manufacturing resources used in a manufacturing process. The calculation of daily demand by the computer system and method of the present invention is based on anticipated (forecasted) or actual orders for a manufactured product and certain predetermined parameters associated with the manufacturing resources. The results of the computer system and method, i.e., the planned-for demand of manufacturing resources, when used to schedule and allocate manufacturing resources, provides sufficient availability of manufacturing resources to meet unanticipated demand for a manufactured product.
BACKGROUND OF THE INVENTION
In the manufacturing or factory setting, customer orders for various items need to be processed and produced in a certain amount of time (e.g., by a promised shipping date). For every product ordered which is not already in finished goods inventory and therefore available to fill the customer order, a product must be manufactured. To manufacture the product, certain manufacturing resources (such as raw materials, machine or production line time, shift worker hours, and the like) used in a predetermined sequence of events (the manufacturing process) are required. In order to efficiently utilize the manufacturing resources of the manufacturing plant or factory, and ultimately to fulfill a multiplicity of customer orders, the manufacturer generally employs a system and method for scheduling the use of different resources at different dates and times. The resource schedules allow the manufacturer to plan for having sufficient resources available.
In traditional batch manufacturing methods for producing goods, raw materials are ordered well in advance and kept in a stockroom as raw material inventory. Such manufacturing methods typically use a scheduled batch manufacturing technique in which products are scheduled to be created based upon a weekly or monthly planning schedule. Usually these products are produced as subassemblies or fabricated parts that are scheduled based upon the weekly or monthly requirements for finished products. These subassemblies are then assembled into the final product to fill actual customer orders, or to be placed into finished goods inventory.
Once an assembly or fabricated part is scheduled to be produced, a work order is generated, and the parts required to manufacture the assembly or fabricated part are obtained from the stockroom based upon a planned manufacturing start date and order quantity. Subassembly parts are often produced in the same manner as the final product. Thus, after being produced, the subassemblies are stored until they are needed for a final assembly. Because of the length of time of each process, a large inventory of subassembly parts and finished goods is often needed to satisfy an unanticipated or fluctuating customer demand. This scheduled manufacturing process therefore requires a large amount of space for holding raw material inventory, subassembly parts inventory and finished goods inventory. Additionally, storing such large amounts of inventory results in additional costs related to loss and damage to raw materials, subassemblies and finished goods over time.
Computer software programs have been developed to efficiently accomplish many of the calculations used in batch manufacturing systems by materials planners in a manufacturing company to schedule and track raw materials inventory, batch subassemblies and fabricated parts. Typically, such computer software programs can calculate and determine, and even generate purchase orders, for obtaining the anticipated amount of raw materials required based on the planning schedule input by the materials planners. These computer software programs can also assist in the scheduling of manufacturing resources other than raw materials, such as the scheduling of manufacturing production lines and shift worker crews.
Other scheduling methods have been developed to assist in the planning of the acquisition of raw materials required in the manufacturing processes that utilize manufacturing methodologies other than batch manufacturing methods. Computer scheduling systems that employ these scheduling methods are generally referred to as materials requirement planning (MRP) systems. Typically, MRP scheduling systems assume an infinite capacity of machinery, shift worker hours, and the like, and the MRP system determines the amounts and types of raw materials that must be on hand at particular dates/times for a given manufacturing plant with given forecasted or actual orders.
Manufacturing resource planning (MRP II) systems, an improvement over the typical MRP systems, may also be used to schedule and allocate all kinds of manufacturing resources. MRP II systems generally also use customer orders and marketing forecasts to determine the quantity of manufacturing resources needed at any given time to produce anticipated customer orders. In MRP II systems, the number of days that it takes to manufacture a product from the time the initial manufactured components or subassemblies are produced until the final product is shipped is called the manufacturing lead time or pipeline. A long lead-time, caused by the subassembly manufacturing process, may make it difficult to react quickly to unanticipated customer orders. The lengthy process of long manufacturing lead times, queues for each subassembly, and frequent trips to the stockroom to obtain materials will introduce long periods of delay between manufacturing steps, and thus, a long period of time between the customer's order and the completion and shipment of that order.
One of the more significant problems of these MRP II systems is that the production schedule is created well in advance, and cannot be altered easily. In addition, the computer software programs used in these processes generally lack the ability to easily adjust schedules when conditions change. If the manufacturing process is to become more flexible, the computer software programs used for scheduling should also become more flexible. In the typical MRP II system, however, the production quantity, or total demand on resources, is manually set by a master scheduler, and cannot easily be adjusted.
Therefore, prospective scheduling systems have been developed which identify where and when resource magnitude or timing constraints will be violated if a certain number of orders are received so that these violations may be resolved before they actually happen. However, relationships and constraints associated with products and processes must be accurately modeled in these systems if they are to predict future events with any degree of precision. Models can include process yield and probability factors, but cannot predict random events such as equipment failure, missing parts, or bad weather. Yet, random events must be considered and planned for in advance so that excess material and capacity stores can be used to prevent bottlenecks. The use of alternative resources can also prevent bottlenecks. In either case, timely recognition and response (i.e., scheduling around) is essential to maintaining productivity.
In any manufacturing environment, timely and precise resource plans and schedules are often a critical success factor. Material requirements planning systems enhanced with the above considerations can be used to determine future material requirements and potential shortages due to changing conditions and unexpected events, including unanticipated customer orders. The result of a successfully implemented system would be to reduce inventory and minimize material disruptions. However, even these kinds of material requirements planning systems function well only with definite and planned requirements (i.e., manufacturing systems in which products are built to meet forecasted amounts rather than actual customer orders), and where design cha
Bonalumi Roberto E.
Colon Victor A.
Gleditsch David B.
James Sharon A.
Kulback Barry L.
American Standard Inc.
Frank Elliot
Grant William
Kramer Levin Naftal & Frankel LLP
LandOfFree
Method and system for providing sufficient availability of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for providing sufficient availability of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for providing sufficient availability of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2825601