Method and system for protecting virtual traffic in a...

Multiplex communications – Fault recovery – Bypass an inoperative switch or inoperative element of a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S227000, C370S228000

Reexamination Certificate

active

06741553

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to protection switching and to mechanisms for protecting end-to-end communications at the traffic layer. In particular, the invention is concerned with techniques for allowing fast initiation of protection switching within a protected domain of a communications network.
BACKGROUND OF THE INVENTION
Asynchronous Transfer Mode (ATM) is increasingly becoming the traffic layer of choice for transmitting information among nodes in a network. Better known by its acronym, ATM is a cell-based switching and multiplexing technology designed to be a general-purpose, connection-oriented transfer mode for a wide range of services. The basic building block of an ATM network is the ATM cell.
Each ATM cell sent into the network contains addressing information that establishes a virtual connection from origination node to destination node. Different ATM virtual connections may share the same physical link but belong to different classes of traffic, such as constant bit rate (CBR), variable bit rate (VBR) or unspecified bit rate (UBR). As a result, ATM has the ability to accommodate data and voice traffic having varying bandwidth and quality of service requirements.
ATM traffic can travel between end points along one or more virtual channel connections (VCCs). Different VCCs may thus share the same origination and destination nodes but may be associated with their own quality of service and bandwidth requirements. Also, as is known in the ATM art, several VCCs can be associated with a single virtual path connection (VPC), which defines a unidirectional flow of ATM cells from one end user to another. Moreover, it is possible to define multiple VPCs between two end points, each of which can be associated with multiple corresponding VCCs.
In many situations, such as when high reliability is required, it becomes necessary to protect end-to-end ATM traffic in the event of a failure. Accordingly, the art has seen the development of switching mechanisms for protecting individual VPCs/VCCs. This may consist of providing a protected domain between the origination node and the destination node.
The protected domain typically consists of a bridge node for sending traffic along a working path and/or along a physically diverse protection path. At the other end of the protected domain is a selector node, for selecting either the traffic from the working path or the traffic from the protection path. The selected traffic is passed onwards to the destination node. Thus, although the working path may fail for a given VPC/VCC, the VPC/VCC need not be dropped entirely if the protection path is functional and available.
However, as the number of virtual connections (VPCs/VCCs) that can be accommodated on a single physical link increases, it becomes prohibitively complex to individually protect the hundreds and possibly thousands of connections which share the working path through the protected domain.
In recognition of this difficulty, a bundling concept has been introduced, whereby connections traversing the same physical route are protected as a group. For example, multiple VCCs and VPCs having the same source and end points within the protected domain can be associated with a single virtual path group/virtual circuit group (VPG/VCG). This simplifies the task of protecting a large number of connections.
One such protection scheme is described in a document entitled “ITU-T Recommendation I.630, ATM Protection Switching”, published by the International Telecommunications Union (ITU) Telecommunication Standardization Sector in March, 1999 and hereby incorporated by reference herein.
Specifically, recommendation I.630 discusses the use of an automatic protection switching (APS) channel in both the working and protection paths. The APS channel is a virtual connection for control purposes, defined over the extent of the protected domain and contained within a VPG/VCG. Its purpose is to assist in evaluating the quality of the VPG/VCG and to serve as a conduit for protection switching control protocol messages.
Using the method disclosed in recommendation I.630, a node detecting a failure inserts alarm messages into all the VPCs/VCCs of the group, including the APS channel. The selector node of the protection domain receives these alarm messages and initiates protection switching, while forwarding alarm messages to the destination node outside the protected domain. Of course, the end-to-end connection undergoes an interruption during the time when alarm messages are being received by the destination node.
In many cases, the number of VPCs/VCCs in the group and the distance separating the node detecting the failure from the selector node can be considerable. This results in a lengthy delay in the selector node receiving the alarm message over the APS channel, correspondingly resulting in a lengthy delay before protection switching is initiated and eventually completed. Thus, because current configurations lack an ATM-layer mechanism for immediately alerting the selector node of the occurrence of a failure, the selector node may have to wait a considerable amount of time before initiating the protection switching operation. This results in the destination node unnecessarily experiencing an interruption of the end-to-end connection.
Many deleterious effects can arise from delayed reaction to a failure condition. These include, but are not limited to, unnecessary loss of data and a failure condition being signalled to higher layers of the protocol. Consequently, there may result premature rerouting or termination of the connection.
Clearly, it would be desirable to provide a technique of initiating group protection switching more quickly than can be achieved using existing methods such as those disclosed in recommendation I.630.
SUMMARY OF THE INVENTION
According to the invention, the APS channel is assigned a higher priority than any of the traffic channels. This results in faster initiation of protection switching, as alarm messages are received on the APS channel before they are received on the traffic channels. Thus, protection switching can be started before the traffic channels have a chance to leave the protected domain carrying an alarm message.
Thus, a head-start is given to the protection switching mechanism, resulting in a shortening of the period during which the traffic channels carry alarm messages outside the protected domain. In some cases, protection switching can be completed even before the traffic channels have a chance to leave the protected domain carrying an alarm message.
Therefore, the invention may be summarized broadly as a method of protecting a group of traffic channels travelling through a protected domain. The protected domain includes a bridge node, a selector node and a plurality of other nodes arranged in a working path and in a protection path between the bridge node and the selector node. According to the invention, the method includes a node in the working path detecting failure of the traffic channels, after which the node transmits failure information to the selector node along the traffic channels and along an alarm channel in the working path.
Upon receipt of said failure information by the selector node along said alarm channel, the selector node initiates protection switching of the traffic channels. According to the invention, the alarm channel has a sufficiently high priority relative to the traffic channels to allow the selector node to initiate protection switching before failure information is received along any of the traffic channels.
Preferably, the traffic channels contain ATM virtual path connections or virtual channel connections and the alarm channel is an ATM virtual path connection or virtual channel connection.
The invention is applicable to a 1+1 protection scenario and to a 1:1 protection scenario. In a 1+1 protection scenario, the traffic channels travel through the protected domain along both the working path and the protection path prior to failure detection, and the selector node performs p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for protecting virtual traffic in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for protecting virtual traffic in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for protecting virtual traffic in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3231077

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.