Multiplex communications – Pathfinding or routing – Switching a message which includes an address header
Reexamination Certificate
1998-10-13
2001-11-13
Ngo, Ricky (Department: 2664)
Multiplex communications
Pathfinding or routing
Switching a message which includes an address header
C370S466000, C370S474000
Reexamination Certificate
active
06317433
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method for optimizing link bandwidth utilization in a high speed digital network and to a system for implementing the method. The invention applies more particularly to optimizing voice traffic bandwidth utilization in an Asynchronous Transfer Mode (ATM)network.
BACKGROUND OF THE INVENTION
Modem digital networks are made to operate in a multimedia environment for transporting different types of data including pure data, i.e. files of alphanumeric characters, as well as data representing digitized and encoded voice, image, video signals etc. . . The network should, naturally ensure compliance with a number of requirements specific to each kind of such data traffic.
Different techniques have been developed for transporting data from one location to another, such as packet switching techniques where the data is arranged into packets. Those packets may either be a predefined fixed length, like in Asynchronous Transfer Mode (ATM), or be variable in length, like in a Packet Type Multiplexing (PTM) mode of operation currently used for transporting voice. The basic aim of both packet switching techniques, is to allow a statistical multiplexing of the different types of data onto transmission links to optimize, as much as possible, use of the available transmission bandwidth. Consequently, a large number of networks, both public and private, have been developed for transporting those data throughout the world.
On the other hand, the evolution of telecommunication technologies in general, and of packet switching networks in particular, is driven by many factors among which the technology evolution factor and the application factors are worth being emphasized.
As far as technologies are concerned, obviously considerable progress has been achieved recently with the maturing of new transmission media. High speed rates can now be sustained with very low error rates. High bandwidth can be turned into profit for long distance networks as well as for high rate local networks. Universal use of digital technologies appeared within both private and public telecommunication networks.
Due at least in part to the availability of these emerging technologies, many potential applications that were not possible in the past are now becoming accessible and attractive. In this environment, generic requirements are now expressed by the users, such as:
Improving old applications. Sub-second response times, which are achievable on low cost personal computers, have raised user expectations so that the lengthy wide area networks response times that were acceptable some years ago are today no longer tolerable. The user interface can be improved, for example, with fast response full screen applications.
Enabling new applications. Emerging applications like graphic, image, video and multimedia processing are generating large volumes of traffic. These new applications, not considered feasible (or even thinkable) not too long ago, are now available and are generating an ever-increasing demand on bandwidth.
Optimizing communication networks. There is a need for rationalizing the many disparate networks that major users have already implemented. Investments can be optimized by integrating heterogeneous traffic like voice, video, and data over the same transport facilities regardless of protocols. On the other hand, users want the opportunity to control their networking cost by choosing among the different price/performance options offered by the variety of vendors and carriers and to maximize their ability to take advantage of applications built on top of disparate underlying network technologies.
Accordingly, there has been an explosion in demand for high speed digital network facilities which is leading service providers to install core backbone networks to offer high speed data transportation facilities to large numbers of heterogeneous users' traffic, possibly through “access backbones”. Bandwidth offered through such service providers should be transparent to users and should offer fairly large communication bandwidth at optimal cost.
Service providers are now running or expect to run large ATM core backbone systems for use by users needing to transport data traffic between distant locations throughout the world. Utilization of ATM core backbone systems makes particularly sense when the users traffic is multimedia in nature.
ATM networks are made to transport fixed length data packets, i.e,. 53 byte long packets having 5 bytes for a packet header and 48 bytes reserved to a data payload. Different techniques have been developed to convert variable length packets (PTM) into ATM-like fixed length packets that can then be transported throught the ATM core backbone. These techniques broadly include chopping the PTM packets into fixed length segments, assigning each segment a 5 byte long ATM-like header which enables forwarding the resulting fixed length packets into the ATM core network. Since most PTM variable length packets will not be a multiple of preassigned conventional length, the last constructed ATM packet from each PTM packet will typically have less than 48 bytes of data payload and will need padding bits. The padding bits carry no information and are considered overhead, which increases the bandwidth needed for a user's traffic.
For pure data providing fairly long and controllable packets, the added overhead is a relatively small portion of the overall traffic and thus may be ignored. This is far from being the case for multimedia traffic and more particularly for voice traffic generating randomly distributed relatively short PTM packets. For this kind of traffic, a method for transporting PTM originating data over an ATM network while minimizing overhead may result in significant savings for a customer leasing bandwidth in a service provider network.
Any method which minimizes the creation of overhead can be expected to be welcomed by both the ATM core backbone owner in a competitive service provider environment and by the user leasing bandwidth from such backbone owner.
The present invention focuses on solving the overhead problem created when padding bits are generated during the conversion of variable length data packets into fixed length ATM packets (or cells).
SUMMARY OF THE INVENTION
This invention can be implemented as a method and system for optimizing transmission links bandwidth utilization in an Asynchronous Transfer Mode (ATM) packet switching network including switching nodes interconnected by high speed transmission links. The network is one to be used to transport user data traffic including traffic originally existing as PTM traffic organized as variable length packets. Each such PTM packet has a variable length data payload and a fixed length PTM packet header. The original PTM header is converted into an ATM-like header including a flag (F) identifying the packet as being a PTM packet, a label indication made to orient the current PTM packet within the ATM network nodes, a count (CNT) field for storing the PTM payload length indication therein to enable locating the PTM payload end position and a Header Error Control (HEC) field for storing an ATM-like error control byte (HEC) therein. The converted header is attached to the payload to obtain a PTM frame to be transmitted over the ATM network links.
Objects and characteristics of the invention will become more apparent from the following detailed description of a preferred embodiment of the invention when considered with reference to the accompanying figures.
REFERENCES:
patent: 5414707 (1995-05-01), Johnston et al
patent: 5459722 (1995-10-01), Sherif
patent: 5570355 (1996-10-01), Dail et al.
patent: 5883893 (1999-03-01), Rumer et al.
patent: 5946323 (1999-08-01), Eakins et al.
patent: 5999529 (1999-12-01), Bernstein et al.
patent: 6002692 (1999-12-01), Wills
patent: 6041054 (2000-03-01), Westberg
patent: 6052379 (2000-04-01), Iverson et al.
patent: 6075769 (2000-06-01), Ghanwani et al.
patent: 6108336 (2000-08-01), Duault et al.
Galand Claude
Glaise Rene
Lebizay Gerald
Nicolas Laurent
Cesari and McKenna LLP
Cisco Technology Inc.
Ngo Ricky
LandOfFree
Method and system for optimizing transmission link bandwidth... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for optimizing transmission link bandwidth..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for optimizing transmission link bandwidth... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2615812