Telephonic communications – With check operated control – Other than coin
Reexamination Certificate
2001-02-27
2003-03-11
Tieu, Binh (Department: 2643)
Telephonic communications
With check operated control
Other than coin
C379S114030, C379S114090, C379S128000, C370S353000, C370S355000
Reexamination Certificate
active
06532284
ABSTRACT:
BACKGROUND OF THE INVENTION
Telephone companies have studied the issue of pricing the use of slack capacity in telecommunication networks. One pricing solution proposed is found in U.S. Pat. No. 5,848,139 (the “'139 patent”), assigned to Telecommunications Research Laboratories. The '139 patent discloses a telecommunication traffic pricing control system. The system includes price controllers that receive slack capacity signals of corresponding trunk groups from a local access switch. The price controllers then unilaterally set the prices for the slack capacity. Subscriber agents monitor the prices set by the price controllers and when a price meets conditions satisfactory to a subscriber, the subscriber agent signals a service manager of its agreement to pay at that price. The service manager then sets up the connection and begins charging the subscriber agent for the time used at the agreed upon price.
While the pricing control system of the '139 patent may be satisfactory under certain circumstances, it is inherently inefficient in its structure. This is because the price for the slack capacity is not determined by a market of buyers and sellers, but rather, solely by the sellers in a take-it-or-leave-it fashion.
“Bandwidth” is the capacity of a specific medium for data transmission in a fixed interval of time. Internet bandwidth determines how much Internet content can be transferred in a given time. Due to the increasing importance of bandwidth in today's technology-driven world, bandwidth contracts are rapidly becoming an openly traded commodity. Companies such as Enron Corp., BandX Ltd., Arbinet-thexchange, Inc. and RateXchange Corp. are beginning to standardize contracts, which are then traded on exchanges. For example, RateXchange provides an exchange where members trade bandwidth contracts of three different durations: (i) “Rest of Month” spot contract is good from its immediate delivery to the end of the calendar month; (ii) Spot contracts of 1-month duration for delivery on the first business day of the month; and (iii) Forward contracts of 1-year duration for delivery on the first business day of each quarter.
While exchanges for trading bandwidth contracts are satisfactory for their desired purpose, these exchanges do not provide cost optimization of network data transmissions in many situations. For example, a broad class of applications (such as database replication and bursting delivery of large video files) need bandwidth at some point within a specified time frame, such as a few hours, days, or weeks after the data is generated or requested. As long as data transmission occurs within the time frame, it does not matter exactly when during the time frame the data transmission occurs. For these applications, trading of bandwidth contracts through the exchanges described above cannot effectively and efficiently capture optimal cost for network data transmissions because the existing systems do not provide a live, volatile, spot price for bandwidth.
What is desired, therefore, is a method and system that can leverage a trend towards liquid spot prices to optimize bandwidth costs for a broad variety of network transmissions.
BRIEF SUMMARY OF TECHNOLOGY UTILIZED BY EMBODIMENTS OF THE INVENTION
The embodiments of the present invention described herein utilize one or more of the following technologies. “IPv6”, which stands for Internet Protocol version 6, is an expanded version of Internet Protocol (“IP”) and is currently active at research sites and universities and has wide acceptance from the networking industry (e.g., Cisco Systems, Inc.). IPv4, which is what the Internet currently uses, is a routing technology whereby data are divided into packets and a routing table is utilized to look up where the data packets should be sent. This is performed by devices called routers which connect various networks and subnets inside networks. A computer or workstation can also perform routing and can contain routing tables of its own. IPv4 uses a 32 bit IP address to determine the next destination of the data packet. If there is no specific entry in the routing table for a particular data packet, then a default entry is used, and the packet sent on to the next router or destination.
IPv6 increases the IP address size from 32 bits to 128 bits, to support more levels of addressing hierarchy, a much greater number of addressable nodes and simpler auto-configuration of addresses. Scalability of multicast addresses is introduced. A new type of address called an anycast address is also defined, to send a data packet to any one of a group of nodes. Changes in the way IP header options are encoded allow more efficient forwarding, less stringent limits on the length of options, and greater flexibility for introducing new options. IPv6 thus allows for customizable and expandable headers on each data packet which permits relatively easy customization of packets.
TCP/IP stack/OS level network protocols are also utilized. “TCP” stands for Transmission Control Protocol and it provides a reliable stream delivery and virtual connection service to applications through the use of sequenced acknowledgment with retransmission of packets when necessary. The TCP header structure includes source port number and destination port number. “OS” stands for operating system.
While the embodiments of the invention are described with respect to IP routing technology, it should be apparent to one of ordinary skill in the art that ATM technology may be used instead or in conjunction with IP routing technology. “ATM” stands for Asynchronous Transfer Mode and it is a cell-switching protocol that can handle voice, data, and video communication simultaneously. ATM transfers data in packages referred to as ATM cells. Each cell is 53 bytes,-with the first 5 bytes being the header and the latter 48 bytes carrying data. ATM employs time-division-multiplexing (“TDM”) to send its cells and to direct the cells (via ATM switches) to their correct physical destination in the network. ATM provides extremely high transfer rates (i.e., on the order of gigabits/second) and carries a quality of service guarantee for these transfers. In other words, if a certain transfer rate is needed/expected, ATM can guarantee that it will be provided.
SUMMARY OF THE INVENTION
The objects of the invention are achieved in one embodiment of the invention by a method for optimizing bandwidth pricing for a data transmission system electronically connected to a source of bandwidth spot prices, where the data transmission system transmits data as packets to a predetermined destination. This method includes the steps of: determining whether data can be transmitted at a later time to the predetermined destination; providing acceptable price and maximum acceptable time delay for transmitting the data that can be transmitted at a later time; providing the acceptable price and the maximum acceptable time delay in each packet formed from dividing the data; determining whether a data packet should be stored in a storage device by looking for presence of the acceptable price in the data packet; if the acceptable price is not found in the data packet, sending the data packet to the predetermined destination, and if the acceptable price is found in the data packet, storing the data packet in the storage device; comparing the acceptable price in the data packet with a spot bandwidth price from the source; and transmitting the data packet to the predetermined destination if the spot bandwidth price is at or below the acceptable price or if the maximum acceptable time delay of the packet has been reached.
The objects of the invention are achieved in one embodiment of the invention by a system for optimizing bandwidth pricing for a data transmission system, where the data transmission system transmits data as packets to a predetermined destination. This optimization system includes: first software operable on the data transmission system for providing acceptable price and maximum acceptable time delay for data that can be transmitted at a
Des Pallieres Bertrand
Walker Paul
Milbank Tweed Hadley & McCloy LLP
Morgan Guaranty Trust Company
Tieu Binh
LandOfFree
Method and system for optimizing bandwidth cost via caching... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for optimizing bandwidth cost via caching..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for optimizing bandwidth cost via caching... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3041044