Method and system for multimedia network based data...

Telephonic communications – Audio message storage – retrieval – or synthesis – Multimedia system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S067100, C379S088180, C379S088220, C379S088250, C379S202010, C379S265090

Reexamination Certificate

active

06751297

ABSTRACT:

FIELD OF THE INVENTION
The present invention is a new wide area service provided to businesses and private clients. The invention relates to the field of telecommunications recording and distribution systems and, in particular, to a method and system for recording multimedia communication data that can be distributed throughout various public networks and, further, to a method for providing users with the recorded material using standard, off-the-shelf (OTS), distribution utilities. The invention improves upon systems already in place and includes new and unique equipment and features not previously considered.
ACRONYMS AND DEFINITIONS
The written description of the invention below uses a large number of acronyms and art-specific terms to refer to various services, messages and system components. Although most of these acronyms and terms are known to those skilled in the art, some are not standard in the art. Therefore, for purposes of this disclosure certain acronyms and terms are defined as follows:
ACD—(Automatic Call Distributor) A computerized phone system that routes incoming telephone calls to the next available operator or agent. ACDs are the electronic heart of call centers, which are widely used in telephone sales and service departments of all organizations. The ACD responds to the caller with a voice menu and connects the call to an appropriate individual.
Call Center—A company department that handles telephone sales and/or service. Call centers use automatic call distributors (ACDs) to route calls to the appropriate agent or operator.
CO—(Central Office) A local telephone company switching center. There are two types. The first is called an “end office” (EO) or “local exchange” (LE) and connects directly to the outside plant, which is the feeder and distribution system to homes and offices. The end office (often called a “Class 5 office”) provides customer services such as call waiting and call forwarding. The second type is the tandem office (also toll office or tandem/toll office), which is a central office that does not connect directly to the customer. Toll call record generation and accounting used to be handled in the tandem offices. Today, the billing is mostly done in the end offices. There are more than 25,000 central offices in the U.S.
CTI—(Computer Telephone Integration) Combining data with voice systems in order to enhance telephone services. For example, automatic number identification (ANI) allows a caller's records to be retrieved from the database while the call is routed to the appropriate party. Automatic telephone dialing from an address list is an outbound example.
DSL—(Digital Subscriber Line) A technology that dramatically increases the digital capacity of ordinary telephone lines (the local loops) into the home or office. DSL speeds are tied to the distance between the customer and the telco central office. DSL is geared to two types of usage. Asymmetric DSL (ADSL) is for Internet access, where fast downstream is required, but slow upstream is acceptable. Symmetric DSL (SDSL, HDSL, etc.) is designed for short haul connections that require high speed in both directions. Unlike ISDN, which is also digital but travels through the switched telephone network, DSL provides “always-on” operation. At the telco central office, DSL traffic is aggregated in a unit called the DSL Access Multiplexor (DSLAM) and forwarded to the appropriate ISP or data network.
DTMF—(Dual-Tone Multi-Frequency) The type of audio signals that are generated when you press the buttons on a touch-tone telephone.
GPRS—(General Packet Radio Service) An enhancement to the GSM mobile communications system that supports data packets. GPRS enables continuos flows of IP data packets over the system for such applications as Web browsing and file transfer. GPRS differs from GSM's short messaging service (GSM-SMS) which is limited to messages of 160 bytes in length.
Nonvoice value-added service that allows information to be sent & received across a Mobile Telephone Network.
GSM—(Global System for Mobile Communications) A digital cellular phone technology based on TDMA that is the predominant system in Europe, but is also used around the world. Developed in the 1980s, GSM was first deployed in seven European countries in 1992. Operating in the 900 MHz and 1.8 GHz bands in Europe and the 1.9 GHz PCS band in the U.S., GSM defines the entire cellular system, not just the air interface (TDMA, CDMA, etc.). As of 2000, there were more than 250 million GSM users, which is more than half of the world's mobile phone population.
GSM phones use a Subscriber Identity Module (SIM) smart card that contains user account information. Any GSM phone becomes immediately programmed after plugging in the SIM card, thus allowing GSM phones to be easily rented or borrowed. SIM cards can be programmed to display custom menus for personalized services. GSM provides a short messaging service (SMS) that enables text messages up to 160 characters in length to be sent to and from a GSM phone. It also supports data transfer at 9.6 Kbps to packet networks, ISDN and POTS users. GSM is a circuit-switched system that divides each 200 KHz channel into eight 25 KHz time slots.
ICR—(Intelligent Call Router) A software-based call processing application that provides call-by-call routing to geographically distributed call centers. The system receives real-time status information from all switching systems in a call center enterprise to create a real-time picture of the status of agents, calls, and peripherals throughout the enterprise. Combine this with the ability to distribute calls through different switching platforms and multiple carriers, and you have a complete intelligent call routing solution.
IN—(Intelligent Network) The public switched telephone network architecture of the 1990s, which was developed by Bellcore (now Telcordia) and the ITU. It was created to provide a variety of advanced telephony services such as 800 number translation, local number portability (LNP), call forwarding, call screening and wireless integration. While Bellcore named its version AIN (Advanced Intelligent Network) for use in North America, there are a variety of proprietary versions throughout the world based on the ITU standard. The IN uses the SS7 signaling protocol in which voice calls (or modem data) travels through circuit-switched voice switches, while control signals travel over an SS7 packet-switched network.
ISDN—(Integrated Services Digital Network) An international telecommunications standard for providing a digital service from the customer's premises to the dial-up telephone network. ISDN turns one existing wire pair into two channels and four wire pairs into 23 channels for the delivery of voice, data or video. Unlike an analog modem, which converts digital signals into an equivalency in audio frequencies, ISDN deals only with digital transmission. Analog telephones and fax machines are used over ISDN lines, but their signals are converted into digital by the ISDN modem.
ISDN uses 64 Kbps circuit-switched channels, called “B channels” (bearer channels) to carry voice and data. It uses a separate D channel (delta channel) for control signals. The D channel signals the carrier's voice switch to make calls, put them on hold and activate features such as conference calling and call forwarding. It also receives information about incoming calls, such as the identity of the caller. Since the D channel connects directly to the telephone system's SS7 signaling network, ISDN calls are dialed much faster than regular telephone calls.
ISDN's basic service is BRI (Basic Rate Interface), which is made up of two 64 Kbps B channels and one 16 Kbps D channel (2B+D). If both channels are combined into one, called “bonding,” the total data rate becomes 128 Kbps and is four and a half times the bandwidth of a V.34 modem (28.8 Kbps).
ISDN's high-speed service is PRI (Primary Rate Interface). It provides 23 B channels and one 64 Kbps D channel (23B+D), which is equivalent to the 24 channels of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for multimedia network based data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for multimedia network based data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for multimedia network based data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3355463

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.