Method and system for mounting an information handling...

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S727000, C361S752000, C361S801000, C710S028000

Reexamination Certificate

active

06762932

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to the field of information handling systems, and more particularly to a method and system for mounting an information handling system storage device, such as a hard disk drive.
2. Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
One frequent consideration in the design of information handling systems is the size or footprint taken up by an information handling system. For example, information handling systems that process network information generally attempt to package relatively large amounts of computing power in relatively small housings. In blade servers, as an example, a series of blades are installed in a rack with each blade typically having the information handling components to perform as an independent server. Each server blade in a blade rack typically includes a motherboard with wire lines routed to support communications between components, one or more processors to process network information and a disk storage device, such as a hard disk drive to store information. Motherboard space is a high value commodity on server blades so that blade server information handling system components are generally configured with each planar much smaller than conventional servers having the same functionality.
One problem with configuring server blades is the design of component locations on the motherboard that efficiently perform desired functions in as little board space as practical. As an example, the mounting location for hard disk drives presents a difficult problem since designers can ill afford to lose board space to accommodate the placement of hard drives versus other components and motherboard routing. In addition, hard drives tend to generate heat and have relatively low allowable operating temperatures. Thus, hard drives generally are located near a cooling air inlet to receive cooling from fresh air for greater cooling. However, placement of hard drives near a fresh air inlet tends to interfere with cooling of other components such as processors and other types of chip sets and individual chips, such as bridge chips. Typically, planars for server blades screw hard drives directly to the motherboard and then space other components to aid in achieving adequate airflow. Alternatively, hard drives are mounted remotely and interfaced with a cable to the planar. However, such spaced configurations have greater footprints for the available computing power and tend to have increased complexity and cost in the design and manufacture of blade servers.
SUMMARY OF THE INVENTION
Therefore a need has arisen for a method and system which mounts disk storage devices to a circuit board with a reduced footprint.
A further need exists for a method and system which mounts a hard disk drive to a server blade motherboard with reduced interference to cooling air flow.
A further need exists for a method and system which reduces complexity in the design and manufacture of blade servers.
In accordance with the present invention, a method and system are provided which substantially reduce the disadvantages and problems associated with previous methods and systems for mounting storage devices to an information handling system circuit board. The storage device is coupled to the circuit board so that a space exists between the storage device and the circuit board. Information handling system components are disposed on the circuit board in the space between the storage device and the circuit board to effectively reduce the footprint of the information handling system and to allow cooling air to flow past the storage device through the space with reduced interference.
More specifically, a hard disk drive mounts to a server blade motherboard with attachment devices that elevate the bottom surface of the hard disk drive distally from the top surface of the motherboard. One or more information handling system components, such as bridge or video chips, interface with the motherboard at a location in the space beneath the hard disk drive. The hard disk drive is assembled to the motherboard over the one or more components with an elevated attachment assembly. For instance, shoulder screws couple to the hard disk drive at one end and insert into openings of the motherboard at another end. A recessed area of the shoulder screw engages a narrow portion of a keyhole-shaped motherboard opening and guides the hard disk drive interface into a motherboard interface. A locking feature in the spring engages a locking feature in the opening of the motherboard to hold the hard disk drive in position and elevation springs reduce hard disk drive movement by pushing the lip of the recessed area against the surface of the motherboard.
The present invention provides a number of important technical advantages. One example of an important technical advantage is that disk storage devices mount to a circuit board with a reduced footprint by allowing information handling system components to mount to the circuit board in the space between the disk storage device and the circuit board. The improved use of board space allows more dense information handling systems, such as a two processor and two hard drive server blade in a form factor sufficiently small so as to allow eighteen such server blades in a 3U space.
Another example of an important technical advantage of the present invention is that a hard disk drive mounts to a server blade motherboard with reduced interference to cooling air flow for other components, such as processors. Elevation of the hard disk drives relative to the motherboard permits air flow across the bottom surface of the hard disk drive as well as the components that are mounted beneath the hard disk drive. Reduced interference to air flow allows a greater amount of cooling air to flow to components configured on the motherboard further from the air inlet than the hard disk drive, such as the processors. Further, airflow along the surface of the motherboard provides more efficient cooling of components mounted at the motherboard, such as processor heat sinks.
Another example of an important technical advantage of the present invention is that it reduces complexity in the design and manufacture of server blades. For instance, shoulder screws that slidingly engage motherboard openings allow tool-less assembly of hard disk drives to server blade motherboards. An elevated attachment assembly adapts a variety of disk storage devices to couple to a motherboard with minimal design changes. Further, quiet operation is maintained by elevation springs that hold the hard disk drive in position relative to the motherboard. The elevation springs absorb vibrations and reduce movement of the hard disk drive due to spacing gaps

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for mounting an information handling... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for mounting an information handling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for mounting an information handling... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196698

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.