Method and system for monitoring air pressure in a...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870030, C340S853200, C379S037000

Reexamination Certificate

active

06737976

ABSTRACT:

NOTICE OF COPYRIGHT PROTECTION
A portion of the disclosure of this patent document and its figures contain material subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, but otherwise reserves all copyrights whatsoever.
FIELD OF THE INVENTION
The present invention relates to methods and systems for monitoring air pressure in a telecommunications network
BACKGROUND
Telecommunications companies strive to keep their underground cables in good working order. One of the biggest threats to underground telephone cables is moisture. The conductors in the cables are insulated, usually with a pulp insulation or plastic.
The integrity of the protective cable sheath is compromised when cracks develop. Cracks allow water to enter and electrolysis to occur, which can result in faulted conductor pairs. The characteristics of the cable can change. For example, the noise on the line may increase or there may be cable failure.
With underground cable, the cable is susceptible to water damage due to groundwater or storm water. If there is a crack in the cable, water will permeate and cause conductor damage unless there is a positive pressure within the cable that exceeds and counters the force of the water.
Telephone companies have utilized air pressure systems to put air into their cables. When a crack develops in the cable, the air pressure inside the cable prevents water or moisture from entering the cable. Air pressure systems may include compressors and dryers, with compressors supplying the air and the dryers removing the residual moisture. Air pipes follow the cable route and introduce pressure at various fixed points along the cable route. The air pipes are connected to manifolds, which distribute air to the cables.
With these air pressure systems, telephone companies want to insure adequate air pressure throughout the system and want to detect leaks in the system. Thus, it is very important to measure the air delivery pressure at various locations within the air pressure system.
Air pressure monitoring units, such as Sparton air pressure monitoring systems commercially available from Sparton Technology, Inc., are available to take air pressure readings. In the past, the air pressure readings from monitoring units have been accessible by computers utilizing dial-up modems. However, accessing the monitoring units using dial-up modems has proven slow and forced reliance on outmoded printers and network technology. For example, the maximum connection speed in some cases has been 2400 bytes per second (bps). Due to the slow connection, the monitoring systems have typically only been polled once a day to obtain status reports.
In the past, technicians would print a status report on paper in the morning before going into the field for the day. If the technicians were in the field and needed an updated status report, they would sometimes leave a work site to return to their office and print out a paper report. In some instances, the technicians may have called someone in the office to print and read the report to them.
For example, a technician may be in the field performing work on a piece of equipment connected to the air pressure system. Examples of equipment that technician might repair in the field include an air pipe, a compressor, a manifold, a transducer, a cable splice closure, air tubes, carrier cases feeding out of cable, transducer housings, fittings for air pipes and air tubes, load coils, check valves, pressure plugs (external and internal), pressure valves, flanges placed on cables, cutoff valves, underground terminals, pressure regulators, or the cable itself. If the technician is adjusting the equipment, the technician may need “real time” pressure readings on the equipment. Under current systems, the technician must call someone in an office or technical center to obtain the data. The office receives real time pressure data from the monitoring unit. A person in the office then reads the real time pressure data to the technician in the field. Thus, under current systems, two people are required to adjust the equipment.
SUMMARY OF THE INVENTION
The present invention provides methods and systems for monitoring air pressure in a telecommunications network. An embodiment of a system for monitoring air pressure in a telecommunications network may comprise a device server. The device server receives air pressure data from an air pressure monitoring unit and deliver the air pressure data to a terminal.
In one embodiment, the air pressure data are delivered to the terminal over a computer network, such as a local area network, an intranet, or the internet. Examples of terminals include, for example, personal computers, laptop computers, personal digital assistants, cellular telephones, and wireless communication devices.
In other embodiments, a system of the present invention comprises a plurality of monitoring units, a plurality of device servers, a computer network, and a terminal. Each monitoring unit is connected to a device server. A user at the terminal is able to receive air pressure data from the monitoring units over the computer network. In some embodiments, each monitoring unit is connected to a different device server. In other embodiments, some monitoring units will have dedicated device servers (i.e., only one monitoring unit per device server) and some monitoring units might share a multi-port device server. In other embodiments, multiple monitoring units may be connected to a single device server.
In one embodiment, the monitoring units measure air pressure in telephone cables. Each monitoring unit may comprise two ports, with a first port connecting the monitoring unit to the computer network and a second port allowing a remote terminal to access the monitoring unit directly (e.g., using a modem). Each monitoring unit may have a unique internet protocol address associated with it to enable a user at a remote terminal to connect to the computer network and receive air pressure data from that particular monitoring unit. In one embodiment, the device server is a multiprotocol, micro serial server that provides Ethernet connections to connect the monitoring unit to the computer network. Examples of terminals include, for example, personal computers, laptop computers, personal digital assistants, cellular telephones, and wireless communication devices.
The present invention also relates to methods for monitoring air pressure in a telecommunications network. In one embodiment, a method of the present invention comprises measuring air pressure in the telecommunications network, accessing a computer network, selecting a monitoring unit from a plurality of air pressure monitoring units, connecting with a device server, and receiving air pressure data from the monitoring unit. In a further embodiment, the air pressure data are printed.
The air pressure monitoring units measure air pressure in telephone cables. In one embodiment, each monitoring unit has a unique internet protocol address associated with it. The computer network may be accessed by connecting to the computer network using, for example, personal computers, laptop computers, personal digital assistants, cellular telephones, and wireless communication devices. In one embodiment, a user may wirelessly connect to the network using a laptop computer.
By using systems and methods of the present invention, the retrieval rate of air pressure data is significantly increased. For example, by using systems of the present invention, technicians can connect to the monitoring units and receive the data at rates of 9600 bps or higher (as compared to 2400 bps using modem connections).
It is a feature and advantage of the present invention to provide systems and methods for monitoring air pressure in a telecommunications network with an increased polling speed over convention methods and systems.
Another feature and advantage of the present invention is to provide systems and methods for monitoring air pressure in a telecommunic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for monitoring air pressure in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for monitoring air pressure in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for monitoring air pressure in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3236808

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.