Method and system for managing construction machine, and...

Excavating – Ditcher – Condition responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C172S002000, C701S050000

Reexamination Certificate

active

06449884

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method and system for managing a construction machine, and a processing apparatus. More particularly, the present invention relates to a method and system for managing a construction machine, and a processing apparatus, with which whether the model used by a customer is an optimum one can be evaluated for a construction machine, such as a hydraulic excavator, having a plurality of sections operated for different periods of time, e.g., a front operating device section, a swing section and a track or travel section.
BACKGROUND ART
When advising customers, who are going to purchase construction machines such as hydraulic excavators, about which type of model is optimum, machine makers generally offer an advice based on the specification data listed in catalogues, etc. after hearing the customer's demands.
DISCLOSURE OF INVENTION
However, which type of model is optimum should be judged depending on how the customer employs a machine in practice; and it is difficult to make such a judgment based on only the customer's demand and the specification data listed in catalogues.
In a hydraulic excavator, particularly, excavation frequency and travel frequency differ depending on in which state the machine is used by a customer. Correspondingly, the operating or working time also differs depending on sections of the machine. More specifically, a hydraulic excavator comprises various sections, i.e., an engine, a front operating device (hereinafter referred to simply as a “front”), a swing body, and a track or travel body. The engine is operated upon turning-on of a key switch, whereas the front, the swing body, and the track body are operated upon an operator's manipulation made during the engine operation. Thus, the engine running time, the front operating time, the swing time, and the travel time take different values from one another.
Conventionally, since the operating time for each section cannot be confirmed and hence how a customer employs a hydraulic excavator in practice cannot be confirmed, it has been difficult to evaluate and select an optimum model.
An object of the present invention is to provide a method and system for managing a construction machine, and a processing apparatus, which make it possible to confirm how a customer employs a machine in practice, and to evaluate whether the machine is an optimum model for the customer.
(1) To achieve the above object, according to the present invention, there is provided a method for managing a construction machine, the method comprising a first step of measuring an operation or working status for each of sections of each of a plurality of construction machines working in fields and including various models, and transferring the measured operation status to a base station computer and then storing and accumulating it as operation data in a database; and a second step of, in the base station computer, statistically processing the operation data and producing and outputting evaluation data for determining whether a particular one of the plurality of construction machines is an optimum model.
With those features, how a customer employs a machine in practice can be confirmed, and whether the machine is an optimum model for the customer can be evaluated. It is therefore possible to give an advice to the customer about the optimum model depending on the state of use by using the evaluation result.
(2) In above (1), preferably, the second step includes a third step of calculating, as the evaluation data, a value of at least one index regarding the state of use of the particular one of the plurality of construction machines based on the operation data, and determines based on the calculated index value whether the particular construction machine is an optimum model.
By thus calculating a value of at least one index regarding the state of use of the particular construction machine, how a customer employs the machine in practice can be confirmed, and whether the machine is an optimum model for the customer can be evaluated.
(3) In above (2), preferably, the second step further includes a fourth step of calculating, as the evaluation data, a value of the index for each of construction machines of the same model as the particular construction machine based on the operation data, thereby obtaining first correlation between the index and the number of operated construction machines, and compares the index value of the particular construction machine with the first correlation to determine whether the particular construction machine is an optimum model.
By thus obtaining and comparing the index value and the first correlation, how a customer employs the particular construction machine in practice can be confirmed from comparison with other construction machines of the same model, and whether that machine is an optimum model for the customer can be evaluated more appropriately.
(4) In above (3), preferably, the second step further includes a fifth step of calculating, as the evaluation data, a value of the index for each of construction machines of at least one of the various models of the plurality of construction machines, which differs from the model of the particular construction machine, based on the operation data, thereby obtaining second correlation between the index and the number of operated construction machines, and compares the index value of the particular construction machine with the first and second correlations to determine whether the particular construction machine is an optimum model.
By thus obtaining and comparing the index value and the first and second correlations, how a customer employs a construction machine (particular construction machine) in practice can be confirmed from comparison with other construction machines of the same model and other construction machines of different model, and whether that machine is an optimum model for the customer can be evaluated more appropriately.
(5) In above (1), preferably, the first step measures a load for each of said sections in addition to the operation status for each section, and stores and accumulates the measured load in the database of the base station computer; and the second step further includes a sixth of modifying the measured operation status depending on an amount of the measured load, and produces the evaluation data by using, as the operation data, the load-dependent modified operation status.
In a construction machine, not only the operation status but also the load differ one section to another, and the state of use of the machine varies depending on the amount of load of each section as well. By modifying the measured operation status for each section depending on load and producing the evaluation data by using the load-dependent modified operation status as the operation data, it is possible to compensate for differences in the state of use caused by differences in load, and to evaluate more appropriately whether that machine is an optimum model.
(6) In above (1) to (5), preferably, the operation status is represented by at lease one of an operating time and the number of times of operations.
With that feature, whether the machine is an optimum model for the customer can be evaluated more appropriately by employing any of the operating time and the number of times of operations.
(7) In above (1) to (5), preferably, the construction machine is a hydraulic excavator, and the section is any of a front, a swing body, a track body and an engine of the hydraulic excavator.
With those features, the operation status for each section, i.e., each of the front, the swing body, the track body and the engine of the hydraulic excavator, can be measured, and whether that hydraulic excavator is an optimum model for the customer can be evaluated more appropriately.
(8) In above (1) to (5), preferably, the construction machine is a hydraulic excavator; the sections include a front, a swing body, a track body and an engine of the hydraulic excavator; the operation status is represented by an operating time for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for managing construction machine, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for managing construction machine, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for managing construction machine, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2882319

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.