Method and system for limiting the engine torque of vehicles

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Indication or control of braking – acceleration – or deceleration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S088000

Reexamination Certificate

active

06604041

ABSTRACT:

BACKGROUND INFORMATION
In the case of vehicles with strong motorization, particularly when backing up at full load, the transmission, i.e. the reverse gear can be damaged.
Furthermore, during TCS braking interventions (i.e. traction-control-system braking interventions) on gradients with different coefficients of friction between the left and right vehicle side, the differential is subject to an extreme stress which can lead to destruction of the transmission and/or the differential.
For vehicles in trailer operation, in response to slippage occurring at wheels, such as in the case of the so-called &mgr;-split (split-friction road surface), situations can exist on gradients in which the vehicle does not pick up any speed, in spite of full load. The slipping wheel is braked via the TCS braking intervention. The applied braking torque, the force of the trailer itself, and the downgrade force acting on the vehicle and the trailer can be greater than the engine torque supplied by the engine at a specific engine speed. For vehicles having automatic transmission, the result is that the specified engine torque, minus the torque converted in the brake, is converted in the converter of the automatic transmission into thermal energy, which means it can already be destroyed after a relatively short time.
The examples indicated show that it is necessary to protect the transmission, converter and differential of a vehicle from being destroyed, by reducing or limiting an engine torque. German Patent No. 196 11 839 describes, inter alia, an example for limiting the torque delivered by an internal combustion engine, in order to protect the transmission. In that case, a maximum coupling torque is preset as a function of speed and/or velocity of the vehicle, given the drive position engaged. From this torque, taking into consideration the torque losses of the drive unit and torque portions of the loads, a maximum combustion torque is formed which is not to be exceeded.
The restriction to a maximum combustion torque, described in German Patent No. 196 11 839, is carried out in a complicated manner and lasts a certain time. In addition, the determination whether too high a (wheel-) torque is occurring in the drive train is carried out indirectly, and therefore can be incorrect. The lack of differentiation between driving situations in limiting the engine torque can also lead to errors.
Wheel sensors should preferably be used in the present invention. Wheel-force sensors are known in the related art, of which a few are described by way of example in the following.
From Stöcker, Jörg and others: Der “Intelligente Reifen”—Zwischenergebnisse einer interdisziplinären Forschungskooperation (The “Intelligent Tire”—Intermediate results of an inter-disciplinary research cooperation). In: ATZ Automobiltechnische Zeitschrift 97, 1995, 12, P. 824-832, it is known, for example, to equip a tire with an integrated force sensor by which it is possible to detect forces acting upon the tire in three directions, namely, the longitudinal or X direction, the transverse or Y direction and the vertical or Z direction. The signals derived from these detected forces can be supplied to an evaluation unit in which a desired evaluation of the signals is carried out.
A further device for determining the rotational properties of a vehicle wheel is known, for example, from German Patent No. 196 20 581, which describes a device for determining the rotational properties of a vehicle wheel, magnetizing areas having alternating polarity being provided, arranged uniformly in the circumferential direction of the wheel. The areas are worked into the tire wall or are applied on the tire wall. A sensing element has two or more measuring elements arranged at variable radial distance from the axis of rotation, so that in response to a deformation of the tire because of the forces acting on a tire, or as a result of the transmitted driving torque or braking torque, a change occurs in the phase relation between the measuring signals emitted by the measuring elements. The change in the phase relation is then evaluable as a measure for the torque transmitted from the wheel or the tire to the roadway, and/or the instantaneous friction coefficient.
German Patent No. 196 12 825 describes a roller bearing or a wheel bearing which is designed such that, inter alia, motive forces and/or braking forces can be determined with it.
Both the use of a sensor which is constructed according to the ATZ article or the principle described in German Patent No. 196 20 581, as well as the use of a sensor which is constructed according to the principle described in German Patent No. 196 12 825 is possible within the framework of the method and the system of the present invention.
Although tire sensors have already been described more frequently in the related art as useful for controlling or regulating the performance of vehicles, it has not yet been known till now to limit an engine torque of a vehicle with the aid of signals from such sensors.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a method and a system whereby, if necessary, an engine torque of a vehicle can be limited in a simple manner, it being possible, in particular, to ascertain in a simpler, more exact, and more differentiated manner the occurrence of torques which are too high in the drive train.
Using the method and associated system of the present invention, a torque is determined at the wheel in a simple manner with the aid of a wheel-force sensor, and is then analyzed, as dictated by specific criteria, as to whether this torque is too high. Should this be the case, the engine torque is reduced or limited.
When working with given information about the transmission step engaged, criteria for the occurrence of too high a torque at the wheel are, for example, too great a deviation of the respective torques from one another at the left and right side of the vehicle, too high an acceleration in the drive train and, particularly in the case of automatic transmissions, exceeding a critical value and simultaneous absence of an acceleration.
Given too great a deviation of the respective torques from one another at the left and right side of the vehicle, as can occur on gradients having different friction coefficients between the left and right vehicle side, in the case of &mgr;-split, the differential is extremely stressed during TCS braking interventions. In addition to a quasi-static load, an additional dynamic load occurs for vehicles whose chassis has a tendency to vibrate. With the aid of wheel-force sensors, both the static force and the dynamic force can be ascertained; upon exceeding a critical value, the engine torque can be limited or reduced to a tolerable quantity, so that the differential is protected.
In response to too high an acceleration in the drive train, as can be caused, for example, because of accelerated driving over a high curb, the drive train being stressed the most strongly when one wheel has no connection with the ground for a short time and the entire energy of the drive train is accelerating this one wheel, then the engine torque can be reduced via a rapid engine intervention, so that the drive train is not damaged. In particular, engine torque can be reduced via an engine interface by fuel-injection blank-out or ignition timing adjustment, so that the transmission is not damaged.
Upon recognition of too high a driving torque when driving in reverse at full load, the engine torque can be reduced via a suitable engine interface by electronic throttle control, fuel-injection blank-out or ignition timing adjustment, so that the transmission is not damaged.
If, when driving in trailer operation on gradients, particularly in the case of vehicles having automatic transmission and given a &mgr;-split, it is recognized in response to a detected torque at the wheel that a critical value is exceeded and a vehicle acceleration has simultaneously failed to materialize, then the torque is limited to prevent destruction of the converter by therm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for limiting the engine torque of vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for limiting the engine torque of vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for limiting the engine torque of vehicles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3080319

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.