Method and system for independent control of a variable...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S038000, C280S005500

Reexamination Certificate

active

06456912

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
In general, the invention relates to controlled vehicle suspension systems. More specifically, the invention relates to coefficients of force being offset through suspension damping, and in particular, to a method and system for providing individual wheel control independent of vehicle body forces, for use with suspension damping control outputs.
BACKGROUND OF THE INVENTION
Known variable force suspension systems include variable force shock absorbers and/or struts that provide suspension-damping forces at a magnitude controllable in response to commands provided by a suspension system controller. Some systems provide control between two damping states and others provide continuously variable control of damping force.
In a known manner of control of a variable force suspension, the demand force for each variable force damper is determined responsive to a set of gains, the wheel vertical velocity and the body heave, roll and pitch velocities. An example system determines the demand force as follows: DF=G
h
H′+G
r
R′+G
p
P′+G
w
v, where DF is the demand force, G
h
is the heave gain, G
r
is the roll gain, G
p
is the pitch gain, G
w
is the wheel velocity gain, H′ is the body heave velocity, R′ is the body roll velocity, P′ is the body pitch velocity and v is the wheel vertical velocity. The portion of the demand force computation G
h
H′+G
r
R′+G
p
P′, represents the body component determined responsive to the body heave, roll, and pitch velocities. The portion of the demand force computation G
w
v represents the wheel component determined responsive to the difference between the computed body corner velocity and the body-wheel relative velocity.
A control signal representing the determined demand force is output to control the variable force damper responsive to the demand force. Example variable force damper systems are described in U.S. Pat. Nos. 5,235,529; 5,096,219; 5,071,157; 5,062,657 and 5,062,658. As previously mentioned, current variable force damper systems require both body and wheel input variables to compute the wheel component demand force. Due to the necessity to use both body and wheel input variables, it is difficult for current variable force damper systems to obtain acceptable levels of wheel control without creating undesirable effects on other aspects of a vehicles ride comfort.
Modules are typically used by the variable force damper systems for identifying and controlling the different aspects of automotive control including the body and wheel components. The modules typically use specialized algorithms designed for interpreting the automobiles input forces for a preferred control signal. One module known in the art commands individual damper outputs to a minimum damping state whenever the applicable desired force and damper wheel to body velocity signals are opposite in sign (a state in which the given damper is said to be in an “active” quadrant). Within the limits of damper travel for small to medium-sized inputs, this approach provides acceptable vehicle body motion control. However, this strategy is insufficient by itself to provide acceptable levels of wheel resonance control.
Therefore, it would be desirable to have a method and system that would improve upon the above-mentioned situation, and related situations in which variable force damper control is reliant on both body and wheel input variables. Such an algorithm may provide superior gross motion control and reduced wheel hop. Ideally, the algorithm would improve body and wheel control with minimal if any sacrifice in the vehicles ride comfort and safety.
SUMMARY OF THE INVENTION
One aspect of the invention provides a method for controlling a variable force damper system, including receiving at least one relative velocity signal. At least one body demand force is received. At least one body damper command based on the body demand force is received. At least one wheel motion indicating parameter based on the relative velocity signal is determined. At least one wheel damper command based on the wheel motion indicating parameter is determined and a damper command based on the larger of the body damper command and the wheel damper command is determined.
Other aspects of the invention provide a method where the wheel frequency isolation filter includes a digital band-pass filter. The digital band-pass filter can include a low-pass filter, and a high-pass filter. A slew rate limited can be applied to the wheel damper command. The wheel damper command can be determined by a lookup-table function. The lookup-table function can be based on a linear interpolation function. The lookup-table function can be based on a standard interpolation function. The lookup-table function can be a based on an inherent interpolation function.
Another aspect of the invention provides a method for controlling a variable force damper system, including determining an active quadrant flag based on a supplied body demand force and a supplied relative velocity signal wherein the active quadrant flag may be active or passive. A first body damper command can be determined based on the supplied body demand force. A second body damper command can be determined based on the active quadrant flag wherein the second body damper command is equal to zero when the active quadrant flag is active. The second body damper command can be determined based on the active quadrant flag wherein the second body damper command is equal to the first body damper command when the active quadrant flag is passive. A second wheel damper command can be determined based on the active quadrant flag wherein the second wheel damper command is equal to a function of a supplied wheel damper command and the first body damper command when the active quadrant flag is active and the second wheel damper command can be determined based on the active quadrant flag wherein the second wheel damper command is equal to the supplied wheel damper command when the active quadrant flag is passive.
Other aspects of the present invention provide a method where the determining of the second wheel damper command further includes subtracting the first body damper command multiplied by a pre-defined scaler from the supplied wheel damper command when the active quadrant flag is active and setting the second wheel damper command to equal zero when the second wheel damper command is less than zero.
Another aspect of the present invention provides a method for controlling a variable force damper system, including receiving at least one relative velocity signal. At least one body demand force is received. A body demand force power signal is determined as the product of the body demand force and the relative velocity signal. A body control active quadrant flag responsive to the body demand force power signal is determined wherein the body control active quadrant flag may be active or passive. A body damper command is determined responsive to the body demand force when the body control active quadrant flag is passive, and zero otherwise.
Other aspects of the present invention provide a method in which the body control active quadrant flag is set to active when the body demand force signal is less than a first pre-defined value and set to passive when the body demand force power signal is greater than a second pre-defined value.
Another aspect of the present invention provides a system for controlling a variable force damper system, including a means for receiving at least one relative velocity signal, means for receiving at least one body demand force, means for determining at least one body damper command based on the body demand force, means for determining at least one wheel motion indicating parameter based on the relative velocity signal, means for determining at least one wheel damper command based on the wheel motion indicating parameter; and means for determining a damper command based on the larger of the body damper command and the wheel damper command.
Another

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for independent control of a variable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for independent control of a variable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for independent control of a variable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.