Telecommunications – Audience survey or program distribution use accounting
Reexamination Certificate
1999-04-30
2004-01-06
Bost, Dwayne (Department: 2681)
Telecommunications
Audience survey or program distribution use accounting
C455S161100, C455S186100
Reexamination Certificate
active
06674993
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method and system for sensing physical parameters corresponding to an object or event in the physical world and, based on the observed physical parameters, retrieving a data location on a computer network pointing to information associated with the physical world object or event.
BACKGROUND OF THE INVENTION
The increasing use of wide area networks such as the Internet has resulted in an explosion in the provision of on-line services. Computer users can access a vast wealth of information and services by utilizing a wide area network to establish a connection with other computers connected to the network.
The Internet is a global network of millions of computers belonging to various commercial and non-profit entities such as corporations, universities, and research organizations. The computer networks of the Internet are connected by gateways that handle data transfer and conversion of messages from a sending network to the protocols used by a receiving network. The Internet's collection of networks and gateways use the TCP/IP protocol. TCP/IP is an acronym for Transport Control Protocol/Interface Program, a software protocol developed by the Department of Defense.
Typically, the computers connected to a wide area network such as the Internet are identified as either servers or clients. A server is a computer that stores files that are available to other computers connected to the network. A client is a computer connected to the network that accesses the files and other resources provided by a server. To obtain information from a server, a client computer makes a request for a file or information located on the server using a specified protocol. Upon receipt of a properly formatted request, the server downloads the file to the client computer.
The World Wide Web is a system of Internet servers using specified Internet protocols and supporting specially formatted documents. The HyperText Transfer Protocol (HTTP) is the underlying protocol used by the World Wide Web. HTTP defines how messages are formatted and transmitted, and what actions Web servers and browsers should take in response to various commands. The other main standard of the World Wide Web is Hyper-Text Markup Language (HTML), which covers how documents and files are formatted and displayed. HTML supports links to other documents, as well as graphics, audio, and video files.
Users access the content contained on the Internet and the World Wide Web with an Internet Browser, which is a software application used to locate and display web pages. Files on a web server are identified by a uniform resource locator. A Uniform Resource Locator (“URL”) is the global address of files and other resources on the Internet. The address indicates the protocol being used and specifies the IP address or the domain name where the file or resource is located. Typically, a URL identifies the name of the server and the path to a desired file on the server. For example, a URL for a web server may be constructed as follows: “http://<server>/<filepath>”, where <server> identifies the server on which the file is located and <filepath> identifies the path to the file on the server. Thus, with the name of the server and the correct path to a file, a properly formatted URL accesses a desired file on a server connected to the World Wide Web.
As one can imagine, there are myriad documents and files accessible over the Internet. However, as discussed above, retrieving desired information on the Internet requires knowledge of an associated URL. Accordingly, if, for example, a consumer wishes to obtain information about or order a particular company's product on the World Wide Web, she must know the URL (data location) corresponding to that company's web site. Conversely, if a corporation desires the public to visit its web site containing information about its products, it will typically advertise its web site and corresponding URL in television, radio, print or other media. A consumer may then enter this URL, assuming he remembers it, into a browser and access the web site.
When a specific URL or data location is not known, search engines are a way of locating desired information. Typically, a user enters key words or search terms into a search engine, which returns a list of URLs corresponding to web sites or USENET groups where the key words or search terms were found. Often a search engine will return a large list of web sites, through which the user must wade in order to locate the few web sites relevant to his query.
Due in part to the proliferation of commercial web sites, consumers have become accustomed to the notion that there is a corresponding web site for the vast majority of products and services being commercially offered. Yet, as described above, access to a particular web site on the Internet, requires knowledge of the actual URL or access to a search engine. This becomes problematic, however, when there is no immediate access to a computer connected to the Internet. For example, when a radio listener hears a song on the radio and desires more information about it, he must remember the song title and the artist. Later, the listener can enter the song title or the artist as search terms in a typical search engine. Beyond this method, there are no alternative ways of identifying data locations or URLs based upon an observation of a particular product or event. In light of the foregoing, it can be seen that a need exists for alternative methods of identifying URLs or other data locations on a computer network.
SUMMARY OF THE INVENTION
The present invention provides a method and system for identifying data locations or uniform resource locators associated with physical observations in the real world. The method and system includes selecting certain physical parameters based upon an observation of real world objects and events and associating such physical parameters with data locations on the Internet or other computer network. When the real world object is observed or a real world event occurs, physical parameters relating to the object or event are sensed and recorded. These stored physical parameters are then communicated to a database, which returns a data location corresponding to the observed physical parameters. Thus, the present invention allows a user to use an appropriate sensing device to merely mark or key in on objects or events in the real world in order to find data locations related to the objects or events in the on-line world.
In a preferred embodiment of the system of the invention, one observed physical parameter is the channel or carrier frequency of a broadcast. The system includes a means for sensing the channel or carrier frequency of the broadcast. As set forth in more detail below, the means for identifying may be a remote device or “clicker” that uses a chirp signal to identify the channel or carrier frequency of the broadcast. The sensing unit may also be a hand-held, laptop, desktop, or other computer programmed to contain a list of available broadcasts that can be selected by the user. The system further includes a computer database having stored associations between these physical parameters (here, the channel or frequency of the broadcast) and one or more data locations, uniform resource locators, or Internet addresses. Thus, when the sensing means identifies and provides the channel of a broadcast, the computer database selects the corresponding uniform resource locator, Internet address or other data location. The system thus enables the identification and selection of an Internet address containing information corresponding to the broadcast, even though neither the broadcast nor the user provides an explicit Internet address.
In other preferred embodiments, the sensing means also includes a clock or other means for identifying the time, so that the physical observation may include a set of physical parameters including not only the channel of the broadcast, but also the time of the broadcast. Furthermore,
Bost Dwayne
Gelin Jean A
Microvision Inc.
LandOfFree
Method and system for identifying data locations associated... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for identifying data locations associated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for identifying data locations associated... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3198806