Surgery – Instruments – Electrical application
Reexamination Certificate
2001-03-13
2004-01-27
Paik, Sang Y. (Department: 3742)
Surgery
Instruments
Electrical application
C606S052000, C606S034000, C606S038000
Reexamination Certificate
active
06682527
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the use of radio frequency energy for heating and desiccating tissue. More particularly, the present invention relates to a control method, system, and apparatus for delivering radio frequency current to the tissue through electrodes disposed on bipolar surgical instruments.
The delivery of bipolar radio frequency energy to target regions within tissue is known for a variety of purposes. Of particular interest to the present invention, radio frequency energy may be delivered by bipolar surgical instruments to regions in target tissue for the purpose of heating and/or desiccation, referred to generally as hyperthermia. Bipolar electrosurgical devices rely on contacting electrodes of different polarity in close proximity to each other against or into tissue. For example, bipolar forceps have been used for coagulating, cutting, and desiccating tissue, where opposed jaws of the forceps are connected to different poles of an electrosurgical power supply. The radio frequency current thus flows from one jaw to the other through the tissue present therebetween. Use of such bipolar forceps is effective for a number of purposes and advantageous in that its effect is generally limited to the tissue held between the jaws without unwanted heating of adjacent tissues.
A primary goal for the delivery of bipolar radio frequency energy for hyperthermic treatments is the complete, thorough, and uniform heating of the treatment tissue without causing charring of the treatment tissue. Charring greatly increases electrical resistance through the tissue prematurely and can result in termination of the treatment before the tissue is uniformly heated. Uniform heating of the target tissue, however, can be difficult to achieve, particularly in highly vascularized tissues where the variability in local blood flow can have a significant effect on the heating characteristics of the tissue. For example, creation of a lesion in some highly perfused tissue locations may require twice as much power as an identically-sized lesion in less highly perfused locations. While a variety of approaches for achieving such complete, thorough, and uniform heating of tissue have been proposed, most such approaches are somewhat complex. In general, many approaches for achieving uniform tissue heating have relied on slow, low power level, gradual heating of the tissue to avoid the formation of charred or otherwise desiccated, high radio frequency impedance regions within the target tissue. Such approaches, however, are complex, can result in undesirable prolongation of the treatment, and are not always successful.
For these reasons, it would be desirable to provide improved treatment methods, systems, and apparatus which allow for effective and efficient delivery of radio frequency energy to target tissue using electrodes disposed on bipolar devices. In particular, it would be desirable to provide such methods, systems, and apparatus which are useful with many or all bipolar surgical instruments which are now available or which might become available in the future. The methods, systems, and apparatus should be simple to implement and use, and should preferably reduce the complexity, cost, and treatment time required to achieve complete, thorough, and uniform heating and/or desiccation of the target tissue without charring the target tissue. At least some of these objectives will be met by the invention described hereinafter.
DESCRIPTION OF THE BACKGROUND ART
The heating of tissue with radio frequency current using the preferred bipolar surgical systems of the present invention is described in co-pending application Ser. Nos. 09/071,689 filed May 1, 1998 and 09/303,007 filed Apr. 30, 1999, the full disclosures of which are incorporated herein by reference. Radio frequency power apparatus and methods are described in U.S. Pat. Nos. 5,954,717, 5,556,396; 5,514,129; 5,496,312; 5,437,664; and 5,370,645; WO 95/20360, WO 95/09577, and WO 93/08757. Bipolar electrosurgical devices are described in U.S. Pat. Nos. 5,833,690; 5,797,941; 5,702,390; 5,688,270; 5,655,085; 5,662,680; 5,582,611; 5,527,313; 5,445,638; 5,441,499; 5,403,312; 5,383,876; 5,217,460; 5,151,102; 5,098,431; 4,043,342; and 4,016,886; Soviet Union Patent Publication SU 197711; and French Patent No. 598,149.
SUMMARY OF THE INVENTION
The present invention provides improved methods, systems, and apparatus for effective and efficient delivery of radio frequency (RF) energy to electrodes of bipolar surgical instruments disposed in treatment tissue for inducing hyperthermia and other purposes. The treatment region resulting from bipolar radio frequency treatment may be located anywhere in the body where hyperthermic exposure may be beneficial. The treatment region may comprise and/or be located in tissue of or surrounding the liver, kidney, lung, bowel, stomach, pancreas, breast, uterus, prostate, muscle, membrane, appendix, other abdominal or thoracic organs, and the like.
Treatments according the present invention will usually be effected by passing a radio frequency current through the treatment tissue region in a bipolar manner where paired treatment electrodes are employed to both form a complete circuit and to uniformly and thoroughly heat tissue therebetween. The paired electrodes will have similar or identical surface areas in contact with tissue and geometries so that current flux is not concentrated preferentially at either electrode (or electrode component such as a tissue-penetrating needle) relative to the other electrode(s). Such bipolar current delivery is to be contrasted with “monopolar” delivery where one electrode has a much smaller surface area and one or more “counter” or “dispersive” electrodes are placed on the patient's back or thighs to provide the necessary current return path. In the latter case, the smaller or active electrode will be the only one to effect tissue as a result of the current flux which is concentrated thereabout.
It has been found that the delivery of bipolar radio frequency power to electrodes disposed in tissue can, if the power is delivered for a sufficient time and/or at a sufficient power delivery level or flux, result in an increase in the electrical impedance between the electrodes and tissue. While such an increase in impedance is the natural consequence of tissue desiccation, it can be undesirable if it occurs prematurely since it results in an immediate fall-off of energy delivery (for a voltage limited radio frequency power source). Accordingly, the present invention relies on unique methods of radio frequency power delivery to uniformly and thoroughly heat the target tissue without charring the target tissue.
It is presently believed that the premature increase in electrode-tissue interface impedance may result from the formation of a thin gaseous or vapor layer over the electrode surfaces, apparently resulting from vaporization of water within the tissue as the temperature approaches the local boiling point. The thin gaseous layer appears to spread from an initial nucleation site to cover most or all of the electrode surfaces in a very short time period, resulting in the premature increase in electrode-tissue interface impedance which is very large when compared to the total system impedance prior to formation of the gaseous layer. The methods, systems, and apparatus of the present invention have been found to be useful and effective regardless of the actual mechanism which is responsible for the premature increase in impedance.
In a first particular aspect of the present invention, a method for heating a treatment region of tissue comprises introducing a bipolar surgical instrument, such as forceps, graspers, or the like, having first and second jaws with first and second electrode members within the treatment region. Tissue is grasped between the first and second jaws of the bipolar instrument. The electrode members are energized at a power level to deliver electrical energy to and heat tissue between the first and
Dahbour Fadi H.
Paik Sang Y.
Perfect Surgical Techniques, Inc.
LandOfFree
Method and system for heating tissue with a bipolar instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for heating tissue with a bipolar instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for heating tissue with a bipolar instrument will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3217809