Communications: radio wave antennas – Antennas – Balanced doublet - centerfed
Reexamination Certificate
2005-09-06
2005-09-06
Chen, Shih-Chao (Department: 2821)
Communications: radio wave antennas
Antennas
Balanced doublet - centerfed
Reexamination Certificate
active
06940454
ABSTRACT:
Facial animation values are generated using a sequence of facial image frames and synchronously captured audio data of a speaking actor. In the technique, a plurality of visual-facial-animation values are provided based on tracking of facial features in the sequence of facial image frames of the speaking actor, and a plurality of audio-facial-animation values are provided based on visemes detected using the synchronously captured audio voice data of the speaking actor. The plurality of visual facial animation values and the plurality of audio facial animation values are combined to generate output facial animation values for use in facial animation.
REFERENCES:
patent: 4725824 (1988-02-01), Yoshioka
patent: 4805224 (1989-02-01), Koezuka et al.
patent: 4827413 (1989-05-01), Baldwin et al.
patent: 5159647 (1992-10-01), Burt
patent: 5168529 (1992-12-01), Peregrim et al.
patent: 5187574 (1993-02-01), Kosemura et al.
patent: 5220441 (1993-06-01), Gerstenberger
patent: 5280530 (1994-01-01), Trew et al.
patent: 5333165 (1994-07-01), Sun
patent: 5383013 (1995-01-01), Cox
patent: 5430809 (1995-07-01), Tomitaka
patent: 5432712 (1995-07-01), Chan
patent: 5511153 (1996-04-01), Azarbayejani et al.
patent: 5533177 (1996-07-01), Wirtz et al.
patent: 5550928 (1996-08-01), Lu et al.
patent: 5581625 (1996-12-01), Connell
patent: 5588033 (1996-12-01), Yeung
patent: 5608839 (1997-03-01), Chen
patent: 5680487 (1997-10-01), Markandey
patent: 5699449 (1997-12-01), Javidi
patent: 5714997 (1998-02-01), Anderson
patent: 5715325 (1998-02-01), Bang et al.
patent: 5719954 (1998-02-01), Onda
patent: 5736982 (1998-04-01), Suzuki et al.
patent: 5764803 (1998-06-01), Jacquin et al.
patent: 5774591 (1998-06-01), Black et al.
patent: 5802220 (1998-09-01), Black et al.
patent: 5809171 (1998-09-01), Neff et al.
patent: 5828769 (1998-10-01), Burns
patent: 5875108 (1999-02-01), Hoffberg et al.
patent: 5917937 (1999-06-01), Szeliski et al.
patent: 5982853 (1999-11-01), Liebermann
patent: 5995119 (1999-11-01), Cosatto et al.
patent: 6011562 (2000-01-01), Gagné
patent: 6044168 (2000-03-01), Tuceryan et al.
patent: 6052123 (2000-04-01), Lection et al.
patent: 6115052 (2000-09-01), Freeman et al.
patent: 6181351 (2001-01-01), Merrill et al.
patent: 6320583 (2001-11-01), Shaw et al.
patent: 6504546 (2003-01-01), Cosatto et al.
Notification of Transmittal of the International Search Report or the Declaration, International Search Report for PCT/US02/23973, mailed Nov. 18, 2002.
Valente, Stephanie et al., “A Visual Analysis/Synthesis Feedback Loop for Accurate Face Tracking”, Signal Processing Image Communication, Elsevier Science Publishers, vol. 16, No. 6, Feb. 2001, pp. 585-608.
Yang, Tzong Jer, “Face Analysis and Synthesis”, Jun. 1, 1999, Retrieved from the Internet, http://www.cmlab.csie.ntu.edu.tw/ on Oct. 25, 2002, 2 pg.
Yang, Tzong Jer, “VR-Face: An Operator Assisted Real-Time Face Tracking System”, Communication and Multimedia Laboratory, Dept. of Computer Science and Information Engineering, National Taiwan University, Jun. 1999, pp. 1-6.
Akimoto, T., et al., “Automatic Creation of Facial 3D Models”, IEEE Computer Graphics & Apps., pp. 16-22, Sep. 1993.
Ayache, N. et al., “Rectification of Images for Binocular and Trinocular Stereovision”, Proc. Of 9th Int'l., Conference on Pattern Recognition, 1, pp. 11-16, Italy, 1988.
Belhumeur, P., “A Bayesian Approach to Binocular Stereopsis”,Int'l. J. Of Computer Vision, 19 (3), pp. 237-260, 1996.
Beymer, D.J., “Face Recognition Under Varying Pose”, MIT A.I. Lab, Memo No. 1461, pp. 1-13, Dec. 1993.
Beymer, D.J., “Face Recognition Under Varying Pose”, MIT A.I. Lab. Research Report, 1994, pp. 756-761.
Buhmann, J. et al., “Distortion Invariant Object Recognition By Matching Hierarchically Labeled Graphs”, In Proceedings IJCNN Int'l Conf. Of Neural Networks, Washington, D.C. Jun. 1989, pp. 155-159.
DeCarlo, D., et al., “The Integration of Optical Flow and Deformable Models with Applications to Human Face Shape and Motion Estimation”, pp. 1-15, In Proc. CVPR '96, pp. 231-238 (published)[TM Sep. 18, 1996].
Devernay, F. et al., “Computing Differential Properties of 3-D Shapes from Steroscopic Images without {3-D} Models”, INRIA, RR-2304, pp. 1-28, Sophia, Antipolis, 1994.
Dhond, U., “Structure from Stereo: a Review”, IEEE Transactions on Systems, Man, and Cybernetics, 19(6), pp. 1489-1510, 1989.
Fleet, D.J. et al., “Computation of Component Image Velocity from Local Phase Information”,Int., J. Of Computer Vision, 5:1, pp. 77-104 (1990).
Fleet, D.J., et al.Measurement of Image Velocity, Kluwer Academic Press, Boston, pp. I-203, 1992.
Hall, E.L., “Computer Image Processing And Recognition”, Academic Press 1979, 99. 468-484.
Hong, H.,et al., “Online Facial Recognition based on Personalized Gallery”, Proceedings of Int'l Conference On Automatic Face And Gesture Recognition, pp. 1-6, Japan Apr. 1997.
Kolocsai, P., et al, Statistical Analysis of Gabor-Filter Representation,Proceedings of International Conference on Automatic Face and Gesture Recognition, 1997, 4 pp.
Kruger, N., “Visual Learning with a priori Constraints”,Shaker Verlag, Aachen, Germany, 1998, pp. 1-131.
Kruger, N., et al, “Principles of Cortical Processing Applied to and Motivated by Artificial Object Recognition”, Institut fur Neuroinformatik,Internal Report 97-17, Oct. 1997, pp. 1-12.
Kruger, N., et al, “Autonomous Learning of Object Representations Utilizing Self-Controlled Movements”, 1998,Proceedings of NN98, 5 pp.
Kruger, N., et al, “Object Recognition with a Sparse and Autonomously Learned Representation Based on Banana Wavelets”,Internal Report 96-11, Institut fur Neuroinformatik, Dec. 1996, pp. 1-24.
Kruger, N., et al., “Object Recognition with Banana Wavelets”,European Symposium on Artificial Neural Networks(ESANN97), 1997, 6 pp.
Kruger, N., “An Algorithm for the Learning of Weights in Discrimination Functions Using a priori Constraints”,IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, Jul. 1997, pp. 764-768.
Lades, M., et al, “Distortion Invarient Object Recognition in the Dynamic Link Architecture”,IEEE Transactions on Computers, vol. 42, No. 3, 1993, 11 pp.
Luong, Q. T., et al, “The Fundamental Matrix, Theory, Algorithm, and Stability Analysis”,INRIA, 1993, pp. 1-46.
Manjunath, B. S., et al, “A Feature Based Approach to Face Recognition”,In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 373-378, Mar. 1992.
Mauer, T., et al, “Single-View Based Recognition of Faces Rotated in Depth”,In Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp. 248-253, Zurich, CH, Jun. 26, 1995.
Mauer, T., et al, “Learning Feature Transformations to Recognize Faces Rotated in Depth”,In Proceedings of the International Conference on Artificial Neural Networks, vol. 1, pp. 353-358, Paris, France, Oct. 9-13, 1995.
Mauer, T., et al, “Tracking and Learning Graphs and Pose on Image Sequences of Faces”,Proceedings of 2nd International Conference on Automatic Face and Gesture Recognition, Oct. 14-16, 1996, pp. 176-181.
Maybank, S. J., et al, “A Theory of Self-Calibration of a Moving Camera”,International Journal of Computer Vision, 8(2), pp. 123-151, 1992.
McKenna, S.J., et al, Tracking Facial Feature Points With Gabor Wavelets and Shape Models, (publication&date unknown), 6 pp.
Okada, K., et al, “The Bochum/USC Face Recognition System”, 19 pp. (publication&date unknown).
Okutomi, M., et al, “A Multiple-Baseline Stereo”,IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, No. 4, pp. 353-363, Apr. 1993.
Peters, G., et al, “Learning Object Representations by Clustering Banana Wavelet Responses
Buddemeier Ulrich F.
Derlich Karin M.
Dzhurinskiy Yevgeniy V.
Neven Hartmut
Paetzold Frank
Cao Huedung X.
Chen Shih-Chao
Fawcett Robroy R.
Nevengineering, Inc.
LandOfFree
Method and system for generating facial animation values... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for generating facial animation values..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for generating facial animation values... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3393511