Method and system for extracting data from surface array...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Chemical analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S300000

Reexamination Certificate

active

06591196

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the analysis of molecular arrays, or biochips, and, in particular, to a method and system for processing a scanned image of a molecular array in order to index the regions of the image that correspond to features of the molecular array and to extract data from indexed positions within the scanned image that correspond to optical or radiometric signals emanating from features of the molecular array.
BACKGROUND OF THE INVENTION
Molecular arrays are widely used and increasingly important tools for rapid hybridization analysis of sample solutions against hundreds or thousands of precisely ordered and positioned features containing different types of molecules within the molecular arrays. Molecular arrays are normally prepared by synthesizing or attaching a large number of molecular species to a chemically prepared substrate such as silicone, glass, or plastic. Each feature, or element, within the molecular array is defined to be a small, regularly-shaped region on the surface of the substrate. The features are arranged in a regular pattern. Each feature within the molecular array may contain a different molecular species, and the molecular species within a given feature may differ from the molecular species within the remaining features of the molecular array. In one type of hybridization experiment, a sample solution containing radioactively, fluorescently, or chemoluminescently labeled molecules is applied to the surface of the molecular array. Certain of the labeled molecules in the sample solution may specifically bind to, or hybridize with, one or more of the different molecular species that together comprise the molecular array. Following hybridization, the sample solution is removed by washing the surface of the molecular array with a buffer solution, and the molecular array is then analyzed by radiometric or optical methods to determine to which specific features of the molecular array the labeled molecules are bound. Thus, in a single experiment, a solution of labeled molecules can be screened for binding to hundreds or thousands of different molecular species that together comprise the molecular array. Molecular arrays commonly contain oligonucleotides or complementary deoxyribonucleic acid (“cDNA”) molecules to which labeled deoxyribonucleic acid (“DNA”) and ribonucleic acid (“RNA”) molecules bind via sequence-specific hybridization.
Generally, radiometric or optical analysis of the molecular array produces a scanned image consisting of a two-dimensional matrix, or grid, of pixels, each pixel having one or more intensity values corresponding to one or more signals. Scanned images are commonly produced electronically by optical or radiometric scanners and the resulting two-dimensional matrix of pixels is stored in computer memory or on a non-volatile storage device. Alternatively, analog methods of analysis, such as photography, can be used to produce continuous images of a molecular array that can be then digitized by a scanning device and stored in computer memory or in a computer storage device.
FIG. 1
shows a generalized representation of a molecular array. Disk-shaped features of the molecular array, such as feature
101
, are arranged on the surface of the molecular array in rows and columns that together comprise a two-dimensional matrix, or grid. Features in alternative types of molecular arrays may be arranged to cover the surface of the molecular array at higher densities, as, for example, by offsetting the features in adjacent rows to produce a more closely packed arrangement of features. Radiometric or optical analysis of a molecular array, following a hybridization experiment, results in a two-dimensional matrix, or grid, of pixels.
FIG. 2
illustrates the two-dimension grid of pixels in a square area of a scanned image encompassing feature
101
of FIG.
1
. In
FIG. 2
, pixels have intensity values ranging from 0 to 9. Intensity values of all non-zero pixels are shown in
FIG. 2
as single digits within the pixel. The non-zero pixels of this scanned image representing feature
101
of
FIG. 1
inhabit a roughly disk-shaped region corresponding to the shape of the feature. The pixels in a region surrounding a feature generally have low or 0 intensity values due to an absence of bound signal-producing radioactive, fluorescent, or chemoluminescent label molecules. However, background signals, such as the background signal represented by non-zero pixel
202
, may arise from non-specific binding of labeled molecules due to imprecision in preparation of molecular arrays and/or imprecision in the hybridization and washing of molecular arrays, and may also arise from imprecision in optical or radiometric scanning and various other sources of error that may depend on the type of analysis used to produce the scanned image. Additional background signal may be attributed to contaminants in the surface of the molecular array or in the sample solutions to which the molecular array is exposed. In addition, pixels within the disk-shaped image of a feature, such as pixel
204
, may have 0 values or may have intensity values outside the range of expected intensity values for a feature. Thus, scanned images of molecular array features may often show noise and variation and may depart significantly from the idealized scanned image shown in FIG.
1
.
FIG. 3
illustrates indexing of a scanned image produced from a molecular array. A set of imaginary horizontal and vertical grid lines, such as horizontal grid line
301
, are arranged so that the intersections of vertical and horizontal grid lines correspond with the centers of features. The imaginary grid lines establishes a two-dimensional index grid for indexing the features. Thus, for example, feature
302
can be specified by the indices (
0
,
0
). For alternative arrangements of features, such as the more closely packed arrangements mentioned above, a slightly more complicated indexing system may be used. For example, feature locations in odd-indexed rows having a particular column index may be understood to be physically offset horizontally from feature locations having the same column index in even-indexed rows. Such horizontal offsets occur, for example, in hexagonal, closest-packed arrays of features.
In order to interpret the scanned image resulting from optical or radiometric analysis of a molecular array, the scanned image needs to be processed to: (1) index the positions of features within the scanned image; (2) extract data from the features and determine the magnitudes of background signals; (3) compute, for each signal, background subtracted magnitudes for each feature; (4) normalize signals produced from different types of analysis, as, for example, dye normalization of optical scans conducted at different light wavelengths to normalize different response curves produced by chromophores at different wavelengths; and (5) determine the ratios of background-subtracted and normalized signals for each feature while also determining a statistical measure of the variability of the ratios or confidence intervals related to the distribution of the signal ratios about a mean signal ratio value. These various steps in the processing of scanned images produced as a result of optical or radiometric analysis of molecular arrays together comprise an overall process called feature extraction.
Designers, manufacturers, and users of molecular arrays have recognized a need for automated feature extraction. Automated feature extraction, like any other automated technique, can produce enormous savings in the time and cost of using molecular arrays for chemical and biological analysis. Automated feature extraction can also eliminate inconsistencies caused by user error and can greatly increase the reproducibility and objectivity of feature extraction.
SUMMARY OF THE INVENTION
One embodiment of the present invention comprises a method and system for automated feature extraction from scanned images produced by optical, radiometric, or other types of analysis of molecular arrays. First

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for extracting data from surface array... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for extracting data from surface array..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for extracting data from surface array... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3020153

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.