Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2002-03-27
2004-08-31
Jones, Mary Beth (Department: 3736)
Surgery
Diagnostic testing
Cardiovascular
C600S509000, C600S521000, C600S508000, C600S506000
Reexamination Certificate
active
06783498
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of ambulatory and non-invasive monitoring of an individual's physiological parameters. In particular, the invention relates to an apparatus and method for extracting a cardiac signal from a signal generated by a thoracocardiograph (TCG) that may also contain respiratory and motion
oise signals.
BACKGROUND OF THE INVENTION
As used herein, “plethysmography”, and its derivative words, is the measurement of a cross-sectional area of a body. “Inductive plethysmography” is a plethysmographic measurement based on determination of an inductance or a mutual inductance. A “plethysmographic signal” is a signal generated by plethysmography, and specifically by inductive plethysmography. The cross-sectional area of the body measured by a plethysmograph, also referred to herein as a thoracocardiograph (TCG), may include, singly or in combination, the chest, abdomen, neck, or arm.
The inductance sensor may be as simple as a conductive loop wrapped around the body cross-section. The loop is attached to a close-fitting garment that expands and contracts with the body cross-section. As the body cross-section expands and contracts, the area enclosed by the loop also expands and contracts thereby changing the inductance of the loop. The inductance change of the loop may be converted to an electrical signal using methods known to one of skill in the electrical art.
If the loop is placed around the chest, the changes in the loop inductance may be correlated to respiration volumes. For example, U.S. Pat. No. 4,308,872 (“'872 patent”), issued Jan. 5, 1982 and titled “Method and Apparatus for Monitoring Respiration,” discloses a method and apparatus for monitoring respiration volumes by measuring variations in the patient's chest cross sectional area and is herein incorporated by reference in its entirety.
In addition to measuring respiration volumes, a plethysmograph may also measure cardiac volumes and aortic pulses as described in U.S. Pat. No. 5,178,151 (“'151 patent”), issued Jan. 12, 1993 and titled “System for Non-invasive Detection of Changes of Cardiac Volumes and Aortic Pulses,” and herein incorporated by reference in its entirety.
U.S. Pat. No. 6,047,203 (“'203 patent”), issued Apr. 4, 2000 and titled “Physiologic Signs Feedback System,” discloses a non-invasive physiologic signs monitoring device which includes a garment that may be worn and has a plurality of sensors disposed on the garment such that respiratory and cardiac signs may be measured and transmitted to a remote device. The '203 patent is herein incorporated by reference in its entirety.
Co-pending U.S. patent application Ser. No. 09/836,384 (“'384 application”), filed on Apr. 17, 2001 and titled “Systems and Methods for Ambulatory Monitoring of Physiological Parameters,” discloses a system and method for non-invasive, ambulatory monitoring of pulmonary and cardiac parameters and is herein incorporated by reference in its entirety.
The plethysmographic, or TCG, signal generated by the inductance sensor placed around the chest will be composed of essentially three signals generated from different sources. The first, and largest component of the TCG signal is caused by respiration and has a characteristic frequency that varies from about 12 breaths per minute to about 30 breaths per minute. The second, and smaller, component of the TCG signal is generated by the expansion and contraction of the heart within the chest cavity and is characterized by a frequency that varies from about 50 beats per minute to about 100 beats per minute (or more) in the resting state. The third component of the TCG signal is caused by motion or noise and cannot be characterized by a narrow range of frequencies. In order to extract cardiac parameters from the TCG signal, the cardiac component must be separated from the respiratory and noise components of the TCG signal. Although no further mention of the noise component of the TCG signal will be made, when referring to the respiratory, or pulmonary, component of the TCG signal, it should be understood to include the noise or motion component of the TCG signal as well.
Separating the cardiac signal from the pulmonary signal in the plethysmograph signal is difficult, if not impossible, for two reasons. First, the cardiac and pulmonary signals are composite signals having component frequencies close to each other (for example, 0.8-1.7 Hz cardiac frequency, 0.2-0.5 Hz pulmonary frequency) making frequency separation of the signals difficult. Moreover, the harmonics of the component frequencies of the respiratory signal lie directly within the spectrum defining the cardiac signal thereby making the complete separation of the cardiac signal from the respiratory signal impossible. Complete separation of the cardiac and respiratory signals, however, is not required for cardiac parameter extraction but will affect the resolution and accuracy of the extracted cardiac parameter. Furthermore, the frequencies of both the cardiac and pulmonary signals may change at different rates depending on the physical exertion of the subject. Second, the relative amplitude of the cardiac signal may be approximately 20 times smaller than the pulmonary signal and can vary by as much as a factor of three depending on the level of physical exertion thereby requiring very efficient removal of the pulmonary signal in order to recover the cardiac signal.
Two methods for separating the cardiac signal from the pulmonary signal are disclosed in the '151 patent. The first method takes cardiac measurements only during breath-holding thereby eliminating the pulmonary contribution to the plethysmograph signal. Breath-holding is intrusive, however, and may cause discomfort to the subject. The second method averages the plethysmograph signal based on an external trigger signal associated with a cardiac event such as the R wave of an EKG or the upstroke of a systemic arterial pulse. The disadvantage of the average method is the loss of fine details due to the averaging.
Therefore, there remains a need for more efficient signal processing of the plethysmograph signal and extraction of the cardiac signal.
Citation or identification of any references in this Section or any section of this Application shall not be construed that such reference is available as prior art to the present invention.
SUMMARY OF THE INVENTION
One aspect of the present invention is directed to a method for extracting cardiac parameters from a plethysmographic signal, the plethysmographic signal being responsive to at least one cardiac parameter, the method comprising the steps of: performing a frequency domain filtering operation on the plethysmographic signal producing a first filtered signal; performing a time domain filtering operation on the first filtered signal, producing a second filtered signal; and extracting the cardiac parameter from the second filtered signal. The frequency domain filtering operation may include a band-pass filter and furthermore be characterized by a lower corner frequency that is determined by a heart rate.
Another aspect of the present invention is directed to a method for extracting cardiac parameters from a plethysmographic signal, the plethysmographic signal being responsive to at least one cardiac parameter, the method comprising the steps of: performing a frequency domain filtering operation on the plethysmographic signal producing a first filtered signal; performing a time domain filtering operation on the first filtered signal, producing a second filtered signal; and extracting the cardiac parameter from the second filtered signal wherein the time domain filtering operation that includes an ensemble averaging operation.
The ensemble averaging operation further comprises the steps of: associating a plurality of segments of the plethysmographic signal with events characteristic of a cardiac cycle; shifting a plurality of segments to align the events associated with each of the plurality of events characteristic of the cardiac cycle
Inman Dana Michael
Sackner Marvin A.
Jones Mary Beth
Natnithithadha Navin
Ohlandt Greeley Ruggiero & Perle
Vivometrics, Inc.
LandOfFree
Method and system for extracting cardiac parameters from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for extracting cardiac parameters from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for extracting cardiac parameters from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3281431