Method and system for evaluating the quality of...

Multiplex communications – Diagnostic testing – Determination of communication parameters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S235000, C370S352000

Reexamination Certificate

active

06370120

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to telecommunications and specifically to a method and system for evaluating the quality of packet-switched voice signals.
BACKGROUND OF THE INVENTION
Telephone connections have always been subject to impairments in the form of noise, attenuation, distortion, crosstalk, and echo. Such impairments are particularly common to analog portions of the connection, such as along subscriber loops and within frequency domain multiplexing equipment. Digital transmission alleviates many of these problems but introduces quantization noise or glitches. Even with perfect digital transmission applied for long-haul connections, a typical telephone connection includes many analog components, such as hybrids, where impairments can occur.
A poor connection or a malfunctioning piece of equipment can produce conditions that a telephone customer will find objectionable or intolerable, so that the connection is deemed to be of very poor quality. When there is a high incidence of such poor connections, customers may complain to the service provider or regulatory authorities, or simply change long distance carriers. Perceived quality of telephone connections is therefore a major factor affecting the reputation and marketability of long distance telephone services.
To guard against poor quality, telephone service providers have developed methods to take objective quality measurements upon a line, a piece of equipment, or even an end-to-end telephone connection. These measurements can help the service provider detect and gauge impairments, pinpoint weak elements and correct deficiencies that degrade user perception of quality.
Many such objective measurements are well known and standardized in the art. Empirically-derived thresholds enable analysts to infer the existence and severity of quality problems by comparing measurements to tables of acceptable value. For example, power levels of test signals and quiet channel noise can be measured electronically. Since it is well known that a certain range of signal levels must reach a telephone receiver to produce acceptable volume at the earpiece, and C-weighted noise must be kept at a level relative to the signal level to keep users from experiencing unacceptable noise at the earpiece, the combination of measures for a particular connection supports accurate assessment of the likelihood that a user would find that connection to be of poor quality with respect to ability to hear the distant talker.
For such objective measurements, the effect of extreme values on user perception of quality is clear, and there are easily discerned thresholds for “no effect” and “substantial degradation” conditions. However, for immediate values, there is generally no clear division between values representing acceptable and unacceptable connection quality. Speech clarity and perceived connection quality depend on many variables, including, for example, speech content, talker rhythms, subjective perception of the listener, and users' acclimation to their telephone service. As a result, the correlations between values of objective measures and user perception of connection quality are statistical, representing the combined effects of many different kinds of impairments and variations of sensitivity to them among the population.
Earlier work by the inventor and others in this area have created mappings between objective measurements and perceived quality, so that, for example, when a given circuit was measured in terms of signal level, noise, distortion, crosstalk, and echo, the mapping predicts the percentage of conversations that would be reported as being significantly impaired or of poor quality as perceived by an average user population. Such mappings have proven to be a powerful tool for analyzing reported impairments and for gauging acceptable performance of a new line or piece of equipment before deployment.
The mapping was produced by creating or finding various combinations of measurable characteristics along telephone circuits and then having a population of callers conduct test calls to subjectively gauge the quality of each call. For each test call, the circuit under analysis was rated on a scale of None-Some-Much for each of the impairments manifested to users of the connection related to the selected objectively measurable characteristics. These impairments include noise, volume, distortion, and echo. Each caller also provided an opinion score, which is an overall rating of the circuit quality on a numerical scale.
Each caller also determined whether the overall effect of the impairments was to render the connection: unusable (U; rendering the channel entirely unusable), difficult (D; causing enough difficulty to require adaptation by the speaker and listener), irritating (I; disturbing but not requiring adaptation by the speaker and listener), noticeable (N; minor enough to be ignored), or unnoticeable (O; no effect on quality). The percentage of calls or connections that elicit any one of the first three responses (unusable, difficult, or irritating) is called the P(UDI). The P(UDI) is of particular interest to service providers as a meter of customer satisfaction because it has been shown that overall satisfaction decreases as P(UDI) increases, regardless of average opinion score.
Analysis of empirical data including user reports of impairments and perception quality, together with user reports of impairments obtained in conjunction with objective measurements of connection characteristics then supported a two step development of a means for predicting user perception of quality from objective measurements. First, a model supporting prediction of P(UDI) and average opinion score as a function of percentages of calls with each of the possible combinations of “none,” “some,” and “much” (N, S, M) conditions reported for each of the impairments considered was produced. Then, objective measurements were correlated with user reports of impairments to predict the proportion of N, S, M reports from users that will eventuate as a function of objective measurements. From these two elements, it was then possible to take measurements of the objective characteristics for connections and translate the set of measures obtained into estimates of likely user perception of quality as revealed by P(UDI) and the average opinion score.
SUMMARY
In one aspect, the present invention provides a technique for assessing the quality of a packet-switched communications channel. For instance, the technique provides a means by which a set of objective measurements for a packet-switched telephony connection can be processed to derive a projected perceptual quality level for the connection. It extends upon the techniques of the prior art to adapt for the effects of important new technologies.
Specifically, the present invention addresses packet-switched (e.g., Internet Protocol based) telephony, which is subject to a different set of impairments from ordinary link-switched telephony. The packet-switched environment can produce momentary interruptions or latencies in a streaming signal. In addition, some speech compression and coding schemes can suffer dropouts or garbled portions depending upon the loss of certain packets. Such impairments represent new phenomena that must be incorporated into the measures-to-impairments and impairments-to-quality transforms used to predict user perception of quality.
In one embodiment, the present invention provides a method of evaluating the quality of a packet-switched voice signal. To begin, a plurality of objective characteristics for a voice signal being transmitted across a packet-switched network are selected. At least one of these objective characteristics is packet loss. For each of the objective characteristics, correlations are determined in order to categorize quantitative measurements of the objective characteristic into a number of categories, representing a subjective assessment of the presence and severity of impairments as perceived and described by users. To do so, a plurality of eva

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for evaluating the quality of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for evaluating the quality of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for evaluating the quality of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2891751

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.