Method and system for ensuring a PSTN protocol restart...

Telephonic communications – Plural exchange network or interconnection – With interexchange network routing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S219000, C379S220010, C379S229000

Reexamination Certificate

active

06738471

ABSTRACT:

The present invention relates to a method as defined in the preamble of claim 1 and to a system as defined in the preamble of claim 6 for ensuring a PSTN protocol restart procedure as defined by the V5 standard after a failure of the data link carrying PSTN protocol signalling messages.
Open interfaces (V5.1 and V5.2) between an access network or an access node and a telephone exchange are defined in the ETSI (European Telecommunications and Standards Institute) standards of the ETS 300 324 and ETS 300 347 series. V5 interfaces enable subscribers belonging to a physically separate access network to be connected to a telephone exchange using a standard interface. A dynamic concentrator interface (V5.2) defined by the ETS 300 347 standard series consists of one or more (1-16) PCM (Pulse Code Modulation) lines. One PCM line comprises 32 channels, each of which with a transfer rate of 64 kbit/s, i.e. 2048 kbit/s altogether. The V5.2 interface supports analogue telephones as used in the public telephone network, digital, such as ISDN (Integrated Services Digital Network) basic rate and primary race interfaces as well as other analogue or digital terminal equipment based on semi-fixed connections.
A static multiplexer interface V5.1 consistent with the ETS 300 324-1 and 324-2 standards consists of one 2046 kbit/s PCM line. The V5.1 interface supports the same subscriber types except the ISDN primary rate interface.
In the V5 interface, certain time slots forming a so-called C-channel carry the protocols used co control the interface itself and the calls transmitted through it. The C-channel or the 64 kbit/s time slot used for this purpose is used to transmit information which may pertain to the Control protocol, the Link protocol, the Protection protocol or the BCC protocol or which may consist of PSTN signalling or ISDN data. Furthermore, according to the above-mentioned standards, the C-channel may be reserved for time slots
13
,
15
and/or
31
of the link in the PCM line or V5 interface In the V5.2 interface in particular, the system automatically creates C-channels for the critical protocols (Control, Link control, BCC and Protection) The operator may place the PSTN signalling as desired either in the same channel with the critical protocols or in some other C-channel.
The operator can allocate a maximum of three signalling channels as so-called stand-by channels. These channels are used if the link to which the channels have originally been allocated fails. In a V5.2 interface comprising more than one 2-Mbit/s connections or links, the link whose physical C-channel in time slot
16
carries the Control, Link control. BCC and Protection protocols is designated as a primary link. Further, the link whose physical C-channel in time slot
16
only carries the Protection protocol is a secondary link. The main features of the use and allocation of the above-mentioned channels are described in the standards referred to.
Although, as described above, many kinds of checking procedures are implemented in the V5 interface and many other expedients are used to ensure correct operation of the interface, the standard still contains drawbacks. The ETS 300 324-1 standard, Edition 2 (Annex C, section 17), specifies that in the event of a failure in the PSTN protocol signalling channel (PSTN DL), a time-out TC
3
is started and after the time-out period, all PSTN call's going on are disconnected The same section further specifies that the PSTN protocol restart procedure has to be executed after the signalling channel has been restored co working order if the time-out TC
3
has expired. However there is no check to determine whether the Control protocol signalling channel (CONTROL DL) is in operation, which means that if the PSTN protocol restart procedure is to be executed and the Control protocol signalling channel is not in working order, the restart procedure will fail to be executed. As a result, there may be connections left hanging, at the PSTN subscriber ports without the local exchange or access node knowing anything about them. This results in problems regarding billing and corresponding operations.
In an example, a method is described which comprises a verification of whether the data link which is to carry the Control protocol is in working order or not. However, if the data link is out of order, the restart procedure can not be executed. This may result in unnecessary blocking of PSTN subscriber ports because the blackout of the Control protocol data link may also be of a short duration.
The object of the present invention is co eliminate or at least to significantly reduce the problems described above. A specific object of the present invention is to ensure the execution of the PSTN protocol restart process as far as possible. Another object of the invention is to disclose a flexible method and system for ensuring proper functioning of PSTN subscriber ports.
As for the features characteristic of the invention, reference is made to the claims.
In the method of the invention for ensuring the PSTN protocol start procedure according to the V5 standard, after a first data link carrying PSTN protocol signalling messages has failed, a first time-out for starting the restart process is observed. The time-out TC
3
, is defined in section
17
of annex C to standard ETS 300 324-1. The standard defines the duration of the time-out as 15 seconds. After the 15-second time-out period has elapsed, the PSTN restart procedure is started by sending a start message using a Control protocol signalling message consistent with the V5 standard.
According to the invention, after the first data link carrying the PSTN protocol has been restored to working order after a failure, a check is carried out to establish whether a second data link intended to carry Control protocol signalling messages is in order, and this check is repeated until the data link in question is in order. In addition, when the second data link is in order, a check is carried out to establish whether the first time-out for the PSTN protocol has expired. When both conditions are fulfilled, the PSTN protocol restart procedure is executed.
As compared with prior art, the invention provides the advantage that it makes it possible to avoid blocking of PSTN subscriber ports due to short-duration malfunctions in the data link carrying the Control protocol, which is a consequence of a failure detected in the Control protocol data link because the PSTN protocol restart procedure cannot be executed. Thus, the invention clearly improves the reliability of the V5 interface.
In a preferred embodiment of the present invention, the interval of checking the working order of the second data link intended to carry Control protocol signalling messages is monitored using a second time-out, TR
3
, which is started after the check and replaced until the second data link is in order. The duration of the first time-out, TC
3
, is preferably shorter than the duration of the second time-out. TR
3
.
Thus, because of the above-mentioned time-outs the duration of the shorter time-out is spent waiting and observing whether the first data link intended to carry the PSTN protocol recovers from its malfunction. After this, the second time-out is started, which preferably is longer than the first time-out, and after the second time-out has expired, a check is carried out to establish whether the first and second data links intended to carry the PSTN and Control protocols are in working order. In this way, small breaks in the operation of the first data link are eliminated by means of the first time-out and then if even the second data link is out or order, both data links are given a chance to recover from the malfunction during the second time-out.
Since the V5 interface is controlled by both the local exchange and the access node, situations may occur where one of the parties finds that all data links are in order and starts the PSTN protocol restart procedure while the other party is carrying out checks on the data links as described above. In this case, the s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for ensuring a PSTN protocol restart... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for ensuring a PSTN protocol restart..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for ensuring a PSTN protocol restart... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3229277

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.