Method and system for enhancing communications efficiency in...

Electrical computers and digital processing systems: multicomput – Computer network managing – Computer network monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S227000, C370S254000

Reexamination Certificate

active

06571286

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention is related to a method and system to be utilized in data communications. In particular, the present invention is related to a method and system to be utilized in data communications involving at least one data communications network.
2. Description of the Related Art
Data communications is the transfer of data from one or more sources to one or more sinks that is accomplished (a) via one or more data links between the one or more sources and one or more sinks and (b) according to a protocol. Weik,
Communications Standard Dictionary
203 (3rd ed. 1996). A data link is the means of connecting facilities or equipment at one location to facilities or equipment at another location for the purpose of transmitting and receiving data. Weik,
Communications Standard Dictionary
206 (3rd ed. 1996). A protocol, in communications, computer, data processing, and control systems, is a set of formal conventions that govern the format and control the interactions between two communicating functional elements in order to achieve efficient and understandable communications. Weik,
Communications Standard Dictionary
770 (3rd ed. 1996).
A data communications network is the interconnection of three or more communicating entities (i.e., data sources and/or sinks) over one or more data links. Weik,
Communications Standard Dictionary
618 (3rd ed. 1996).
Data communications networks connect and allow communications between multiple data sources and sinks over one or more data links. The concept of a data link includes the media connecting one or more data sources to one or more data sinks, as well as the data communications equipment utilizing the media. The data communications networks utilize protocols to control the interactions between data sources and sinks communicating over the one or more data links. Thus, it follows that such protocols must take into account the data communications requirements of data sources and sinks desiring communication over the one or more data links, and the nature of the underlying one or more data links themselves, in order to ensure that the requirements of such data sources and sinks are met.
Of necessity, data communication protocols must take into account both the technology of the underlying data links and the data source and sink communications requirements. The underlying data links, data source, and data sink communications requirements give rise to a high degree of complexity.
It has been found that the complexity can be reduced to a manageable level by modularizing the concepts of data communication, as reflected in data communication network protocols. One such well-known modular approach is the International Standards Organization's Open Systems Interconnections (OSI) 7 layer (or level) model.
Those skilled in the art will recognize that data communication protocols exist which do not follow the OSI model exactly. However, insofar as the OSI model is a conceptual model dealing with the problem of network communications, non-OSI models still provide the same functionalities of the OSI model, although the terminology utilized in such protocols may be different from OSI terminology. Notwithstanding the foregoing, the OSI model still provides the most straightforward conceptual approach to the problems involved in network communication, and thus the OSI 7 layer model will be utilized, below, to discuss communications problems which exist in the art. Furthermore, while the OSI model does have seven layers, the first, second, and third levels will be most relevant to the detailed description to follow.
OSI Level 1 is the physical level, and deals with the true electrical signals and electrical circuits that are utilized to carry information. OSI Level 2 is known as the data link layer (or service layer interface/media access control layer when reference is made to a LAN context) and is a conceptual level whereby access to the physical level (OSI Level 1) is actually controlled and coordinated. A good example of OSI Level 2 is LAN protocol, which coordinates and controls access to the physical layer (OSI Level 1), or media over which actual transmission occurs, by use of data frames (packages of binary data) to which are appended headers containing a source address and a destination address. In LAN terminology, these addresses are referred to as media access control (MAC) addresses.
OSI Level 2 deals with access and control of actual media over which data is transmitted. Physical constraints often put an upper limit on the number of stations that can be physically connected (at OSI Level 1). OSI Level 2 defines ways that multiple discontinuous OSI Level 1, or physical, segments can be stitched together to achieve what appears to be one large coherent (or contiguous) network. The OSI Level 2 achieves this by managing “bridges” between physical segments. In Ethernet LAN, these bridges are termed transparent bridges, and in token-ring LAN these bridges are termed source-route bridges.
Conceptually one step removed from OSI Level 2 is OSI Level 3, the network layer. While OSI Level 2 frees network designers from dealing with the actual physical connections of the underlying networks, OSI Level 2 logic must still take into account the actual physical structure of the underlying physically connected networks.
Conceptually, network designers tend to prefer to work with networks that have a certain defined logical structure, which may be different from the underlying physical connections of the network. Consequently, OSI Level 3 has been developed. OSI Level 3 allows network designers to treat what may, in fact, be a tremendously large number of non-contiguous network segments strung together by OSI Level 2 entities as one large homogenous network with a logical structure different than that of the underlying physical network (which must be dealt with by the OSI Level 2 logic). That is, OSI Level 3 allows network designers to create a conceptual network with a defined conceptual structure, and to thereafter refer to one network level protocol defined set of addresses (e.g., using OSI Level 3 logic to define and operate a logical token ring structure over an actual network that may, from a physical standpoint, have the structure of an Ethernet network).
The foregoing is achieved by defining the conceptual network at OSI Level 3. Thereafter, OSI Level 3 entities exchange the defined conceptual network addresses with OSI Level 2 entities, which actually figure out where such network addresses are to be located on a true physical network. Thus, OSI Level 3 working with and through OSI Level 2, allows network designers to impose logical structure onto what may look like physical chaos.
OSI Level 2 entities typically achieve the foregoing by “mapping” the OSI Level 3 network addresses onto OSI Level 2 service layer addresses. Thus, when an OSI Level 3 entity passes a network layer address to an OSI Level 2 entity, the OSI Level 2 entity typically uses a look-up table to convert the OSI Level 3 address into its OSI Level 2 equivalent.
Refer now to FIG.
1
.
FIG. 1
shows a high-level schematic view of the physical connections of networked computer environment within which one embodiment of the present invention can function. Shown in
FIG. 1
are computers
100
-
132
.
Shown are computers
100
-
116
which are physically connected in ring structures. Computers
102
-
108
are physically connected in ring structure
152
. Computers
108
-
116
are physically connected in ring structure
154
.
Computers
100
,
102
,
132
are physically connected via shared media
156
. Computers
132
,
130
,
120
,
118
are physically connected via shared media
158
. Computers
120
,
128
,
126
,
124
,
122
are physically connected via shared media
160
.
As can be seen from
FIG. 1
, networked computers can present a dizzying array of connections and a high degree of complexity. Furthermore, those skilled in the art will recognize that in practice the number of interconnected computers is virtually infinite

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for enhancing communications efficiency in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for enhancing communications efficiency in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for enhancing communications efficiency in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3080834

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.