Chemistry: analytical and immunological testing – Rate of reaction determination
Patent
1998-10-09
2000-08-08
Snay, Jeffrey
Chemistry: analytical and immunological testing
Rate of reaction determination
436 35, 436164, 436905, 422 8209, 4352887, 356432, G01N 2163, G01N 3348
Patent
active
061000930
DESCRIPTION:
BRIEF SUMMARY
The invention relates to a method for determining the quality of a crop, comprising the determination of at least one characteristic parameter of the photosynthesis process of the crop, which parameter serves as a quality indicator for the crop.
Crops, such as plants and flowers, but also vegetables and fruit, use a photosynthesis process to draw from their environment the energy they need to survive. It is pointed out that hereinafter the term "crops" is used to designate both the crops in the field and the products harvested therefrom. During the abovementioned photosynthesis process, carbon dioxide is converted with the aid of sunlight into hydrocarbon compounds, during which process oxygen is also liberated. Every crop is equipped with its own photosynthesis system for this purpose, which system is located in the green parts of the crop, such as the leaves, the stem or the fruit. A photosynthesis system of this type is, inter alia, provided with a light-intercepting system which contains two important pigment-protein complexes, namely the photosystems I and II (PSI and PSII, respectively), which are equipped with photon transfer components. With the aid of its light-intercepting system, a crop absorbs sunlight. Said sunlight provides, inter alia, for a chain of successive oxidation/reduction reactions of components in the photosynthesis system, the intercepted solar energy being transported by the photon transfer components essentially to PSI and to PSI. The transported solar energy is then used to produce a photochemical reaction in the crop, during which electrons are transported and oxygen is liberated.
A method of the type mentioned in the preamble is disclosed in the article entitled "Determination of the physiological state of potted plants and cut flowers by modulated chlorophyll fluorescence" by O. van Kooten et al. in Acta Horticulturae 298, 1991. With the known method the efficiency of the linear stream of electrons in the photosynthetic membranes of potted plants and cut roses is determined in vivo. To this end, the fluorescence production F of the chlorophyll molecules which form part of PSII is first of all measured in a specific wavelength region under normal intensity of the ambient light. The maximum fluorescence production F.sub.m of the chlorophyll molecules is then measured in the same wavelength region at a saturating intensity of the ambient light. With the known method a first activating light source with adjustable light intensity and a second measuring light source of constant light intensity are used. Both light sources transmit light in a first wavelength region which comprises wavelengths between about 350 and 700 nm. After a set period has elapsed, the chlorophyll fluorescence is then detected in a second wavelength region between 700 and 730 nm. Since fluorescence per se signifies loss of the solar energy intercepted by the crop, the detected fluorescence productions F and F.sub.m can then be used to calculate the efficiency of the linear stream of electrons. This parameter can be used in accordance with the known method as a quality indicator for the crop.
The known method has the disadvantage that the value of the parameter determined by said method is highly dependent on, in particular, the intensity of the ambient light. Other ambient conditions, such as the temperature and the gas composition and the degree of relative humidity of the air, also influence the value of the parameter. A correction must first be made for all of these factors before the parameter determined using the known method is usable as an absolute quality indicator. In order to reduce the influence of these environmental factors, the crop must, moreover, preferably be screened from the environment as far as possible while carrying out the method. This demands the use of a supplementary, complex and therefore expensive screening device.
The aim of the present invention is to overcome the abovementioned disadvantage and to provide a method of the type mentioned at the start with which an absolute quali
REFERENCES:
patent: 4942303 (1990-07-01), Kolber et al.
patent: 5012609 (1991-05-01), Ignatius et al.
patent: 5602446 (1997-02-01), Kolber et al.
patent: 5854063 (1998-12-01), Li et al.
N.G. Bukhov et al., "Analysis of dark-relaxation kinetics of variable fluorescence in intact leaves", Chemical Abstracts, vol. 116, No. 25, Jun. 22, 1992.
W.P. Quick et al., "An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves", Chemical Abstracts, vol. 112, No. 9, Feb. 26, 1990.
B. Genty et al., "The relationship between nonphotochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves", Chemical Abstracts, vol. 113, No. 23, Dec. 3, 1990.
Harbinson Jeremy
Van Kooten Olaf
Instituut Voor Agrotechnologisch Onderzoek (ATO-DLO)
Snay Jeffrey
LandOfFree
Method and system for determining the quality of a crop does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for determining the quality of a crop, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for determining the quality of a crop will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1149210