Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2000-03-29
2001-11-06
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C606S130000, C600S429000, C600S439000
Reexamination Certificate
active
06314312
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a method and a system for determining movement of a body organ or therapy region of a patient.
2. Description of the Prior Art
Minimally invasive therapies are increasingly gaining in significance. The goal of such systems is to keep the intervention into the body, and thus the stress on the patient, as slight as possible. Although minimally invasive therapies for location-invariant body regions or organs, for example in the field of neurosurgery or orthopedics, are already being widely employed, the use thereof for, for example, procedures directed to a specified site (for example, a biopsy) at moving organs presents problems. In contrast to manipulation at non-moving body regions, the therapist working in minimally invasive fashion must account for moving therapy regions, for example in the abdominal area, produced, for example, by respiration, blood pulsing, or peristaltic action. In order to exactly align one or more instruments (for example, laparoscope or needles) to a desired target region, for example a metastasis in the liver, and in order also to maintain this alignment during the movement of the organ, a continuous acquisition of the movement of the organ is required.
German PS 198 09 460 discloses a medical aiming device for respiration-adapted puncturing of a target that cannot be displayed with ultrasound using a centesis instrument that is connected to an ultrasound applicator. This aiming device is arranged so as to be longitudinally displaceable at a patient bed of a magnetic resonance apparatus. The centesis instrument can be aligned with respect to the target region on the basis of images of the examination subject registered with an ultrasound applicator as well as with the magnetic resonance apparatus. German OS 197 51 761 and German OS 196 07 023 disclose other systems for movement-adapted assistance in medical procedures.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method and a system that enable an adequately precise acquisition of the movement of an organ or body region, so that a therapist or operator is provided with exact knowledge with respect to the position of the organ or therapy region of interest.
This object is achieved in a method for determining the movement of an organ or therapy region of a patient having the following steps.
A navigation system having a number of sensors is employed to define a patient-specific coordinate system with one or more of the sensors at the patient at or in the region of location-invariant body parts. The position of at least one sensor that is essentially at rest relative to the moving organ or therapy region is identified within the coordinate system, the positional data thereof being employed for determining the attitude - in the coordinate system - of the image plane of an image of the moving organ or therapy region that is registered over time and reproduced at a monitor, or the attitude of the image plane is identified on the basis of the spatial position of the image registration system with respect to the patient. At least one point or section of the moving organ or therapy region within the image is defined and the motion-dependent path thereof is also identified and, based thereon, at least one point that is characteristic of the motion path is identified and displayed at a monitor within the coordinate system, which is also displayed on this monitor, together with the attitude of the image plane.
The monitor at which the point characteristic is displayed may be the same as the monitor on which the attitude of the image plane is continuously displayed, or may be a different monitor.
A navigation system for acquiring various sensor signals serves as basis for the inventive method. For example, active signal generators or reflectors can be employed as the sensors, the signals therefrom (generated or reflected) being acquired with a suitable acquisition unit. Such navigation systems are known in the field of medical applications. The coordinate system of the navigation system within which the position of the sensors is identified is individually defined for each patient on the basis of one or more location-invariant body parts. Regions close to bone such as, for example, the sternum, the upper iliac spur or the upper edge of the symphysis preferably serve for this purpose. The position of an essentially motionless sensor is acquired within this coordinate system, and the attitude of an image plane of an image of the moving organ or therapy region, that is isochronically registered with an image pickup method, is then determined based on the position of this substantially motionless sensor.
Alternatively, the identification of the plane can ensue on the basis of the spatial position of the image pickup system. The coordinate system as well as the attitude of the image plane are displayed at a monitor and simultaneously the registered image is displayed at the same or another monitor. In this way, the physician is informed where the image plane lies with reference to the patient-individual coordinate system; at the same time, he or she is provided with knowledge about the structure to be treated as a result of the registered, medical image. In order to then obtain information about the organ or region movement and in order to reproduce motion-referenced information in the coordinate system, the physician can particularly advantageously select a point or a region at the organ, for example, the edge of the liver, or in the region. This selection can be made, for example, directly at the image monitor that, for example, can be fashioned as a touch screen. A definition of the point or of the region of interest (ROI) is also possible using a cursor displayable at the monitor via a joystick. Thereafter, the position of this selected point is computationally determined in the coordinate system, and the movement of the selected point is likewise acquired. For example, either the entire motion path is then continuously displayed in the monitor at which the coordinate system is shown, or for example in the case of the liver, the respective reversing (extreme) points of the motion are displayed. The physician thus is provided with motion-referenced information correlated with the actual motion of the organ or of the region, which allows the physician to exactly determine the point-in-time at which the organ or the region is in the position displayed in the coordinate system.
According to an embodiment of the invention, the movement of at least one medical instrument, to be guided with respect to the organ or therapy region, is acquired in addition to the movement of the body organ or of the therapy region, and the position of the medical instrument, at which at least one sensor is arranged whose signal can be acquired with the navigation system, is likewise displayed at the monitor in the coordinate system.
After this, the attitude or spatial position of at least one medical instrument, for example a needle, is acquired with the navigation system. A sensor that enables the detection within the coordinate system is likewise located at the instrument. This position is also displayed at the monitor for the physician. He or she thus is provided with information as to the position and attitude of the instrument within the coordinate system as well as with respect to the image plane, and thus also with respect to the structure visually presented at the other monitor at which, for example, a metastasis can be seen. Based on the knowledge of the attitude of the metastasis or the like as well as the position of the medical instrument, this can then be guided exactly into the desired region despite the movement of the organ or region.
It has proven expedient to obtain an ultrasound image or an x-ray image as the image. The essentially motionless sensor in the former instance is arranged at an ultrasound applicator employed for the image pickup. The position of the ultrasound applicator defines the attitud
Feussner Hubertus
Wessels Gerd
Lateef Marvin M.
Qaderi Runa Shah
Schiff & Hardin & Waite
Siemens Aktiengesellschaft
LandOfFree
Method and system for determining movement of an organ or... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for determining movement of an organ or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for determining movement of an organ or... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2580293