Method and system for detecting ionizing radiation

Radiant energy – Invisible radiant energy responsive electric signalling – With radiant energy source

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S394000, C250S363100

Reexamination Certificate

active

06806474

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods and systems for detecting ionizing radiation.
2. Background Art
In principle, in situ gamma-ray spectrometry determines the quantities of radionuclides in some source medium with a portable detector. In comparison, the more established method of laboratory gamma-ray spectroscopy consists of taking small samples of the medium into the laboratory for gamma-ray analysis. In situ gamma-ray spectrometry characterizes a larger volume of material, requires less time to determine accurate radionuclide concentrations, and minimizes worker doses and the risk of radioactive contamination. The main limitation of in situ gamma-ray spectrometry lies in determining the depth distribution of radionuclides.
In general, radionuclide depth distributions aid conventional in situ gamma-ray spectrometry in determining accurate radionuclide inventories and surface dose rates from individual radionuclides. Depth distributions also represent reliable data for radionuclide transport studies. Indications of neutron or energetic charged particle fluxes can result from determinations of the activation as a function of material depth. For decontamination and decommissioning activities, the radionuclide depth distribution determines the amount of material that must be remediated to satisfy the release limits.
To date, three in situ gamma-ray spectroscopic methods have been used to determine the depth distribution of radionuclides in soil and are presented hereinbelow. These three in situ methods are based on multiple photopeak responses, the photopeak-to-valley ratio, and the attenuation of a lead plate. Each method requires a priori assumptions of the depth distribution function and uses a gamma-ray spectrometer. Spectrometers allow the users to decipher the energies of gamma-ray emissions, a necessity for determining the specific radioisotope present. In addition to usually assuming a uniform soil density with depth, all three approaches for determining depth distributions also assume a spatially uniform radionuclide distribution. All three in situ methods require a priori assumptions of the functional form for the depth distribution. The multiple photopeak and peak-to-valley methods only have the ability of determining a single depth parameter. An exception exists if the radionuclide of interest emits three or more significant gamma-rays, decently separated in energy, and if the spectrometer used has sufficient energy resolution to identify and separate each gamma-ray emission. In such cases, the multiple photopeak method could determine one fewer number of depth parameters than the number of significant gamma-rays emissions. The subsurface maxima exhibited by aged
137
Cs fallout in soil are best described by at least two depth parameters and can not be adequately characterized by a single depth parameter.
In addition to the three in situ methods for determining depth distributions, spectroscopic measurements in boreholes have also been studied for applications in oil wells. Because boring itself qualifies as an invasive process, borehole measurements should be considered a quasi-in-situ approach. In addition to increased contamination risks, borehole measurements require boring equipment and custom fabricated detection equipment (extended cryostat lengths for HPGe detectors).
Three other imaging techniques include: pinhole collimation, coded aperture imaging, and Compton scatter imaging. The main limitation, common to all three of these imaging techniques, is the energy resolution of the detectors used. These other imaging techniques utilize position-sensitive detector arrays, which typically are large scintillation crystals with insufficient energy resolution for complex gamma-ray fields. For characterizing low levels of radioactivity, advancements in position-sensitive semiconductor detectors have not yet yielded devices that are large enough for adequate sensitivities or affordable enough for a rugged and portable in situ system.
U.S. Pat. No. 4,197,460 to Anger discloses a collimator assembly used to perform multi-angle nuclear imaging and the results are used to estimate relative depth of objects. Multi-angle display circuits divide the probe radiation image into different regions.
U.S. Pat. No. 3,979,594 to Anger discloses how relative positions of radiation sources at different depths are estimated via a focused collimator. Multiple-channel collimators are mentioned as an option to be used.
U.S. Pat. No. 5,429,135 to Hawman et al. discloses how a focusing collimator detects the depth of an organ in nuclear medicine.
U.S. Pat. No. 5,442,180 to Perkins et al. discloses an apparatus for determining the concentration of radioactive constituents in test samples (such as surface soil) by means of a real-time direct readout.
U.S. Pat. No. 3,612,865 to Walker discloses: (1) a collimator consisting of many small channels that must be fixed at the same polar angle; (2) a position-sensitive radiation detector; and (3) rotation of the collimator to produce circular images that are later processed.
U.S. Pat. No. 5,665,970 to Kronenberg et al. discusses collimation as a common alternative for modifying the “directional capability” of detectors. First and second regions surrounding a detector lead to a difference in forward and backward directed electrons generated by radiation interacting in these regions.
U.S. Pat. No. 6,175,120 to McGregor et al. discloses a high-resolution, solid state, ionization detector and an array of such detectors.
Other U.S. patents of a more general interest include: U.S. Pat. Nos. 4,394,576; 5,773,829; and 5,870,191.
The primary measurement problem which is not solved by the prior art is the in situ determination of the depth distribution of gamma-ray emitting radionuclides in source media. Contaminated soil and activated concrete are common examples of anthropogenic radionuclides in large area geometries. For these measurement situations, the gamma-ray spectrum tends to be complex due to the presence of multiple-radionuclides (natural or anthropogenic in origin). Therefore, the spectrometers used in the field must possess excellent energy resolution to minimize the deleterious effects of interfering gamma-ray emissions.
Other practical issues are that an in situ detection system should be portable and rugged. Because it is not uncommon for low levels of anthropogenic radionuclides to be present in smaller quantities than natural radionuclides, it is important that the detection system also possess a sufficient gamma-ray detection efficiency for reasonable counting times.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an improved method and system for detecting ionizing radiation such as for radiation survey and detection purposes.
In carrying out the above object and other objects of the present invention, a method for detecting ionizing radiation emitted by a material located over an extended area is provided wherein there is no need to move a radiation detector having a detection axis substantially perpendicular to the area and located within a detector space. The method includes allowing ionizing radiation over a first narrow range of polar angles relative to the detection axis to enter the detector space and be detected by the detector while shielding ionizing radiation outside the first narrow range of polar angles from entering the detector space. The method also includes allowing ionizing radiation over at least one other narrow range of polar angles different from the first narrow range of polar angles to enter the detector space and be detected by the detector while shielding ionizing radiation outside the at least one other narrow range of polar angles from entering the detector space until the ionizing radiation emitted by the material over the extended area has been detected.
The method may further include shielding ionizing radiation outside a first range of acute angles substantially perpendicular to the detector axis during the steps of allowing. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for detecting ionizing radiation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for detecting ionizing radiation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for detecting ionizing radiation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3271655

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.