Communications: directive radio wave systems and devices (e.g. – Combined with diverse type radiant energy system
Reexamination Certificate
2003-05-12
2004-04-13
Gregory, Bernarr E. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Combined with diverse type radiant energy system
C342S053000, C342S054000, C342S055000, C342S058000, C342S060000, C342S061000, C342S062000, C342S104000, C342S118000, C342S175000, C342S195000, C342S059000
Reexamination Certificate
active
06720907
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to defense systems. More particularly it relates to device and method for kill assessment of intercepted missiles.
BACKGROUND OF THE INVENTION
Defense systems against surface-to-surface (SS) missiles are designed to destroy or incapacitate the warhead of an incoming SS missile. Most defense systems achieve this task by means of launching a kill vehicle (hereinafter referred to as “interceptor”) to intercept the incoming SS missile. The warhead kill in this case, is achieved by a direct impact of the interceptor with the incoming SS missile or by detonating a warhead fitted into the interceptor at the time of interception. Other defense systems may employ directed energy to destroy an incoming missile warhead. A warhead kill is determined according to its contents. SS missiles warheads are commonly classified into four main categories: high explosive, chemical, biological and nuclear. A warhead kill for a high explosive or a nuclear missile, which also contains a significant amount of high explosive, is defined as a detonation of the high explosive of the SS missile warhead within a short time (typically less than a second) after interception. A warhead kill for a chemical or biological missile, which contains some form of liquid or gas, is defined as the breakdown of the warhead structure and dispersion of its contents within a short time (up to a few seconds) after interception. Due to the high cost and limited availability of interceptors or energy sources, especially under massive attack scenarios, it is imperatively crucial to determine the result of the interception as soon as possible (within a few seconds) , in order to decide whether it is necessary to launch another interceptor or direct another shot at the same targeted SS missile. Furthermore, any information as to the type of incoming warhead is of great importance for civil defense and intelligence purposes.
Current defense systems suffer from operational problems because of their inability to provide a reliable warhead kill assessment. Current kill assessment methods are based on the following two approaches:
a) One kill assessment method is an automatic computerized evaluation of kill probability, based on the interceptor performance envelope, and according to pre interception radar data. This criteria suffers from severe limitations because of the following reasons:
1) Warhead kill probability is highly sensitive to the very last stage of interception commonly referred to as the “End game”. The important parameters of the end game are beyond the observation capabilities of the defense system radar. Therefore, this highly important interception data can not be considered during real time kill assessment calculations.
2) The performance envelope is statistically constructed for a finite set of interception scenarios conceived by the manufacturer, and varies for different target types. A single operational interception event does not necessarily follow any of these scenarios. (as was evident during the gulf war in 1991, when attempts were made to intercept scud missiles by patriot missiles)
3) There is no certainty that defense system can reliably classify, in real time, the type of the attacking SS missile. Wrong target type classification will lead to wrong selection of performance envelope for evaluation.
4) Since the characteristics of the incoming SS missile, which constitute the basis for the performance envelope calculations are based, mainly, on intelligence sources, there is no certainty that they are indeed accurate and reliable.
b) The second kill assessment method is based on operator observation of the target radar track behavior immediately following the interception. The purpose of this observation is to identify whether the target has disappeared or there has been a noticeable change in its trajectory or velocity in a way that can be reliably interpreted as a successful warhead kill. This second criteria suffers from even greater limitations than the first as was evident during the gulf war of 1991.
1) During the Gulf War scud missiles disintegrated during reentry into the atmosphere around the zone where most of the interceptions took place. As a result, not only that the targets did not disappear from the radar, actually they turned into a cluster of targets formed from the debris of the disintegrated missile. This cluster of targets continued its descent in a trajectory almost identical to the trajectory of the missile prior to its disintegration for a considerable amount of time. Identifying the warhead among these clusters is practically impossible making effective warhead kill assessment practically impossible.
This problem is not restricted to Gulf War scud missiles, but is highly relevant for normal interceptions where the incoming missile will probably disintegrate as a result of being hit by the interceptor. In such a case it would be practically impossible to determine in a high degree of reliability whether the warhead was successfully destroyed or the SS missile merely disintegrated, leaving a live warhead to descent in its trajectory towards a ground target.
2) Another limitation stems from the fact that operator's decisions are subjective, their quality substantially influenced by the operator's experience and skill in determining successful kills. This limitation is enhanced by the fact that there is very limited ability to reliably predict the behavior of an SS missile or its debris after interception under various scenarios. Thus it is extremely difficult if not entirely impossible to provide computer simulation for training radar operators in such scenarios.
There is therefore a need to provide a reliable system and method for real time warhead kill assessment for SS missiles.
BRIEF DESCRIPTION OF THE INVENTION
An aim of the present invention is to provide a reliable system and method for detecting and determining successful interception of missiles.
It is therefore thus provided, in accordance with a preferred embodiment of the present invention, a system for the detection and determination of the success of interception of incoming missiles, used in conjunction with a defense weapon system capable of identifying and tracking incoming missiles and interceptors, the system comprising at least one of a plurality of sensing units, each unit comprising:
an optical sensor for detecting optical signals within a predetermined range;
tracking means coupled to the optical sensor for tracking an intercepting missile or an incoming missile;
processing means for processing optical input detected by the optical sensor and analyzing the optical input to identify an optical signature and determine detonation of interceptor or incoming missile;
communicating means for communicating data between the sensing unit and the defense weapon system;
control means for controlling the tracking means, the processing means and the communicating data.
Furthermore, in accordance with a preferred embodiment of the present invention, the tracking means uses location, speed, angular or range data obtained from the defense weapon system for tracking.
Furthermore, in accordance with a preferred embodiment of the present invention, the optical sensor is capable of detecting intensity of the optical signature and the processing means determines detonation based on the intensity of the optical signature.
Furthermore, in accordance with a preferred embodiment of the present invention, the processing means further includes a database of spectral signatures of various substances that may be contained in a warhead for comparison with the detected optical signature.
Furthermore, in accordance with a preferred embodiment of the present invention, the system includes a number of sensing units at least as many interceptors the defense weapon system handles.
Furthermore, in accordance with a preferred embodiment of the present invention, the optical sensor is a CCD camera.
Furthermore, in accordance with a preferred embodiment of the present invention, the optic
Dippert William H.
Gregory Bernarr E.
Rafael-Armament Development Authority Ltd.
Reed Smith LLP
LandOfFree
Method and system for detecting and determining successful... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for detecting and determining successful..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for detecting and determining successful... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3196159