Method and system for compressing data and a geographic...

Image analysis – Image segmentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S208000, C701S211000, C707S793000, C382S305000, C382S232000

Reexamination Certificate

active

06393149

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a compression system and method, and more particularly, the present invention relates to a compression method that can be used with geographic data used by a navigation application program that provides navigating features and functions to an end-user.
Computer-based navigation application programs are available that provide end-users (such as drivers of vehicles in which the navigation systems are installed) with various navigating functions and features. For example, some navigation application programs are able to determine an optimum route to travel by roads between locations in a geographic region. Using input from an end-user, and optionally from equipment that can determine one's physical location (such as a GPS system), a navigation application program can examine various routes between two locations to determine an optimum route to travel from a starting location to a destination location in a geographic region. The navigation application program may then provide the end-user with information about the optimum route in the form of instructions that identify the maneuvers required to be taken by the end-user to travel from the starting location to the destination location. If the navigation system is located in an automobile, the instructions may take the form of audio instructions that are provided along the way as the end-user is traveling the route. Some navigation application programs are able to show detailed maps on computer displays outlining routes to destinations, the types of maneuvers to be taken at various locations along the routes, locations of certain types of features, and so on.
In order to provide these and other navigating functions, the navigation application program uses one or more detailed databases that include data which represent physical features in a geographic region. The detailed database may include data representing the roads and intersections in a geographic region and also may include information relating to the represented roads and intersections in a geographic region, such as turn restrictions at intersections, speed limits along the roads, street names of the various roads, address ranges along the various roads, and so on.
One difficulty in providing geographic data for use by a navigation application program relates to the efficient utilization of the available computer resources of the navigation system on which the navigation application program is run. Computer-based navigation application programs are provided on various platforms including some with relatively limited computer resources. For example, navigation systems may be located in vehicles or may be hand-held. These types of navigation systems may have relatively limited computer resources, such as limited memory and relatively slow I/O. In order to provide a high a level of functionality in such systems, it is required that the available computer resources be used efficiently.
The limited resources of some navigation systems can affect the ability of these types of navigation systems to provide desired navigation functions, especially when using a relatively large geographic database that includes a relatively high level of detail. Handling the large amounts of data included in a geographic database may adversely affect the performance of navigation systems with limited resources.
Another consideration related to the use of geographic data by navigation systems is that given the relatively large size of the geographic database necessary to provide a desired level of functionality to the end-user, all the data records for an entire geographic region cannot be loaded into the memory of the navigation system at the same time. This is especially true for navigation system platforms with limited resources, such as systems installed in vehicles or hand-held systems. Due to the limited memory resources of these navigation systems, it is necessary to load geographic data as needed from a storage medium, such as a CD-ROM disk, into the memory of the navigation system for use by the navigation application program. Unfortunately, in these types of systems, I/O access from a storage medium may be relatively slow. Thus, the relatively limited memory resources of some types of navigation systems, combined with relatively slow I/O, can limit performance thereby resulting in slow response. Aside from being undesirable, slow response in a navigation system may render the system useless for its intended purpose in certain circumstances. For example, if the navigation system is installed in a vehicle, the driver may require information from the navigation system about a desired route in a matter of seconds in order to utilize the information while driving. If the navigation system requires more than several seconds to calculate a route, the driver may have moved beyond the point at which the routing information provided by the navigation system is relevant. Therefore, it is important that navigation systems operate efficiently in order to provide navigating information relatively quickly.
Navigation application programs may also be run on computer platforms that have in general greater memory resources and faster I/O, such as personal computers or networks. Although these systems may have more and faster resources, the considerations related to the efficient use of geographic data still apply, but on a larger scale. With these types of systems, even greater functionality can be provided if the limitations imposed by memory size and I/O are minimized.
To improve the performance of navigation systems generally and in particular to compensate for the limitations of some navigation system platforms with limited hardware resources, techniques have been devised or implemented to improve navigation system performance by organizing, structuring, or arranging the geographic database or the data in the geographic database in particular ways. Because a navigation system uses geographic data in certain known and expected ways to perform known functions, the geographic data can be organized, structured, or arranged in ways that facilitate their use in these known ways by the navigation system.
One of the techniques that can be used to facilitate the use of geographic data by navigation systems is to organize at least some of the geographic data spatially. When geographic data are organized spatially, geographic features that are close together physically in the geographic region are represented by data records that are, in general, close together in the database and/or on the medium. This kind of organization may minimize the amount of searching in the geographic database when performing some navigation functions.
Another technique that can be used to facilitate access by an application in a navigation system is to organize at least some of the geographic database into groupings (or parcels). When geographic data are organized into parcels, the plurality of data records that together comprise the geographic database are separated into separate groupings (or parcels). The selection of data records to be included in each parcel is based upon a likelihood that all the data records needed to perform a particular navigation function are included in relatively few parcels. For example, parcels may be used to organize some or all of the geographic data spatially. Using parcelization to organize geographic data spatially, geographic features that are located close together physically in the geographic region are represented by data records that are included in the same parcel. Various criteria may be used as a basis for organizing geographic data into parcels, including non-spatial factors such as by administrative area, alphabetical by name, and so on.
Another technique that can be implemented in a geographic database to enhance operation of the navigation system is to minimize consideration of minor or secondary roads during calculation of a route. One way to suppress consideration of minor or secondary roads is to organize some or all of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for compressing data and a geographic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for compressing data and a geographic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for compressing data and a geographic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2877755

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.