Method and system for calibrating ink ejection elements in...

Incremental printing of symbolic information – Ink jet – Controller

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06669322

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to printing devices. More particularly, the invention pertains to optics systems and methods for performing ink ejection element detection and calibration operations.
BACKGROUND OF THE INVENTION
Inkjet printing mechanisms, e.g., printers, plotters, photocopiers, facsimile machines, etc., typically implement inkjet cartridges, often called “pens” to shoot drops of ink onto a sheet of print media, e.g., paper, fabric, textile, and the like. Some inkjet printing mechanisms carry an ink cartridge with an entire supply of the ink back-and-forth across the sheet. Other inkjet print mechanisms, known as “off-axis” systems, propel only a small ink supply with the printhead carriage across the print zone, and store the main ink supply in a stationary reservoir, which is located off-axis from the path of the printhead travel. Typically, a flexible conduit or tubing is used to convey the ink from the off-axis reservoir to the printhead cartridge.
Inkjet printing mechanisms typically comprise a plurality of inkjet pens of various colors. For example, a typical inkjet printer/plotter may comprise four pens, one that prints black ink, and three that print colored inks, e.g., magenta, cyan and yellow. The colors from the three color pens are typically mixed to obtain any particular color.
The pens are typically mounted in stalls within an assembly that is mounted on the carriage assembly of the printing mechanism. The carriage assembly generally positions the inkjet pens and typically holds the circuitry required for interface with components, e.g., firing resistors, piezoelectric elements, and the like, that operate the inkjet pens.
Color printing and plotting generally requires that inks from each pen be precisely applied to the print media. This requires precise alignment of the carriage assembly. However, mechanical misalignment of the pens in conventional inkjet printing mechanisms typically results in offsets in the direction of carriage travel and offsets in the direction of print media travel. This misalignment of the print carriage assembly manifests as a misregistration of the images applied by the pens. In addition, other misalignments may arise due to the speed of the carriage, the curvature of the platen and/or spray from the nozzles, and the like. Furthermore, the misalignments may arise from difficulties that may arise during the manufacture of the pens, such as imperfect nozzle shape and/or placement.
One manner in which conventional printing mechanisms attempt to overcome the problems associated with the carriage assembly misalignments is through implementation of optical systems designed to perform detections on a test strip. More specifically, conventional printing mechanisms may include optical detectors mounted on the carriage assembly for detecting test strips printed by each of the pens. The optical detectors typically consist of one or more light emitting diodes (LED), typically of different colors, that illuminate an area or surface of the media and an optical sensor that receives the signal reflected from the media. Although conventional optical systems have been found to be effective in detecting relative small test strips and certain colors, they also have certain drawbacks and disadvantages.
For example, conventional optical systems have a substantially limited field of view (e.g., about 1270×1270 &mgr;m). Therefore, detection of relatively wide areas with conventional optical systems require performance of several scans, thereby increasing the time required to perform the detections. In addition, conventional optical systems are often limited to sensing colors in the bands of the color spectrum corresponding to the LEDs implemented in the optical systems. One consequence of which is that some of the printed colors may not be accurately detected by the optical systems. Thus, although conventional optical systems have been relatively effective in detecting test strips formed by pens having relatively small swath heights (i.e., pens having a relatively small number of nozzles), conventional optical systems are ill-equipped to detect test strips formed by today's printing mechanisms that utilize pens having a much larger number of nozzles.
SUMMARY OF THE INVENTION
According to an embodiment, the present invention pertains to a method of calibrating ink ejection elements of an image forming device, the image forming device comprising a carriage supporting the ink ejection elements and an optical scanner. In the method, a test pattern is printed onto a print medium with the ink ejection elements. The test pattern is sensed with the optical scanner. In addition, it is determined whether any of the ink ejection elements contains at least one defect, and the ink ejection elements that are determined to contain at least one defect are calibrated.
In accordance with an aspect, the present invention relates to a system for calibrating ink ejection elements in an image forming device. The system includes a controller operable to control the ink ejection elements to fire a set of ink drops onto a print medium in the form of a test pattern and an optical scanner configured to sense the test pattern. The controller is configured to determine whether any of the ink ejection elements contains at least one defect by analyzing the test pattern. In addition, the controller is further configured to calibrate ink ejection elements that are determined as containing at least one defect.
According to yet another aspect, the present invention relates to a computer readable storage medium on which is embedded one or more computer programs. The one or more computer programs implement a method for calibrating ink ejection elements of an image forming device. The one or more computer programs include a set of instructions for printing a test pattern onto a print medium with said ink ejection elements. The one or more computer programs include a set of instructions for sensing said test pattern with an optical scanner. The one or more computer programs also include a set of instructions for determining whether any of the ink ejection elements contains at least one defect. The one or more computer programs further includes a set of instructions for calibrating the ink ejection elements determined to contain at least one defect.
In comparison to known data center cooling mechanisms and techniques, certain embodiments of the invention are capable of achieving certain aspects, including some or all of the following: (1) scanning a relatively wide test pattern area during a single scanning pass to thereby reduce the time required to perform test pattern sensing operations; (2) ability to scan smaller ink drops; (3) ability to scan a greater gamut of colors; and (4) ability to scan images from print medium. Those skilled in the art will appreciate these and other benefits of various embodiments of the invention upon reading the following detailed description of a preferred embodiments.


REFERENCES:
patent: 5576744 (1996-11-01), Niikura et al.
patent: 5767988 (1998-06-01), Dobbs et al.
patent: 5798773 (1998-08-01), Hiramatsu et al.
patent: 5905512 (1999-05-01), Beauchamp
patent: 6037584 (2000-03-01), Johnson et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for calibrating ink ejection elements in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for calibrating ink ejection elements in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for calibrating ink ejection elements in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.