Method and system for automated call graph layout

Television – Two-way video and voice communication – Conferencing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S014080

Reexamination Certificate

active

06677978

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to the field of video conferencing, and more particularly to a method and system for automated call graph layout of a video call.
2. Description of the Related Art
Video conferencing has grown in popularity, especially as a business tool, because it gives participants an opportunity to visually interact without having to travel to the same location. As a result, many businesses have made substantial investments in video networks, including endpoint, MCU, gateway and gatekeeper video devices that interact with each other through a network or that interact with other video devices through public networks, such as the Public Switched Telephone Network or the Internet. A typical business video network has a number of video devices geographically dispersed though out a number of locations and managed by a staff, such as information technology personnel. Further, as video conferencing by Internet Protocol has become more common, business video networks have migrated some video device functionality to modules running on servers and personal computers.
Active video network management is one important factor in whether a business is able to use its video network effectively. A video conference call between several video endpoints often presents a complex scheduling and configuration problem involving a number of video devices. Typically, a video network administrator performs scheduling and configuration by interfacing individually with video devices through a network administration computer or server. Manual scheduling and configuration of video devices is time consuming and prone to errors. For instance, video devices, such as endpoints, MCU's and gateways, often have specific configuration requirements in order to successfully complete a video call. A network administrator may attempt to manually layout a graphical representation of video call nodes as a video call is configured, however manually generated graphical layouts are inefficient, prone to error and difficult to adapt to changes in a call configuration.
Recent improvements developed by Forgent Networks, Inc. automate scheduling and configuration of video devices to establish desired video calls. Video network administrators input desired video call parameters and Forgent's management platform automatically generates valid video call configurations between selected endpoints by assigning MCU's and gateways as needed to support the endpoints. However, an automatically generated video call can be quite complex with an arbitrary number and arrangement of endpoints, MCU's and gateways typically output with a tree structure. Complex video calls are difficult to visualize and thus difficult for administrators to understand and manage, especially if a video call configuration is simply defined by a list or tree of video devices. Tree structures generally do not emphasize the individual connections between video devices, make it difficult to show the direction of connections and are not generally visually intuitive to understand, especially for network administrators used to network topology views.
SUMMARY OF THE INVENTION
Therefore a need has arisen for a method and system which graphically lays out a video call to resemble a network topology from an automatically created video call configuration to aid in visualization and management of the video call.
In accordance with the present invention, a method and system are provided which substantially reduce the disadvantages and problems associated with previous methods and systems for presenting a video call configuration. A video call configuration is automatically translated from a tree structured call definition to a visually more intuitive graph structure that resembles the network topography of the video devices in the video call.
More specifically, an automated video call graph layout engine accepts a video call configuration organized as a tree structure and automatically outputs a video call graph layout for display of the video call configuration. A graph node for each video device of the video call tree structure is constructed with a radius and links to video devices proximate to the graph node video device in the tree structure. The video device graph nodes are then identified as leaf graph nodes having a single link or branch graph nodes having plural links. Super graph nodes are constructed from the video device graph nodes by associating leaf graph nodes to the branch graph node to which the leaf graph nodes are linked and by adding invisible nodes to each branch graph node that connects to another branch graph node. The constructed super graph nodes are identified as leaf super nodes or branch super nodes by determining the number of invisible nodes associated with each super graph node. A video call graph layout is constructed by associating super graph nodes with each other by interconnecting leaf super graph nodes to their associated branch graph node until all video device graph nodes of the video call are interconnected.
The present invention provides a number of important technical advantages. One example of an important technical advantage is that a general video call involving an arbitrary number and arrangement of video devices is displayed as a network topology that resembles the physical arrangement of the video devices in the video call, and is thus intuitive for network administrators to understand. Automated video call graph layout from video call configuration information provides improved understanding of automated video call configuration outputs from video management platforms by emphasizing the individual connections between video devices and by showing the direction of connections. Network administrators are able to rapidly view and understand complex video calls to adjust video call configurations or monitor video call performance, with updates and changes to a video call configuration also displayed rapidly with an understandable graphical layout.


REFERENCES:
patent: 6020916 (2000-02-01), Gerszberg et al.
patent: 2002/0015108 (2002-02-01), Takashima et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for automated call graph layout does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for automated call graph layout, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for automated call graph layout will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3210290

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.