Method and system for audio access to information in a wide...

Electrical computers and digital processing systems: multicomput – Remote data accessing – Using interconnected networks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S246000, C379S090010

Reexamination Certificate

active

06240448

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and system for audio access to resources in a wide area public network, such as the Internet.
2. Description of the Prior Art
The number of users of wide area computer networks such as the Internet and the World Wide Web (WWW) is growing exponentially. A number of information services and resources are currently offered on the Internet and WWW. The underlying framework of these services is what a user enters a query on a computer which has access to the Internet. The user can input an address of the resource or can use a search engine for conducting a search of available resources. The query is processed and a connection between the user and a site on the Internet is established with a conventional protocol, such as http. A set of answers are generated and are returned to the user's computer using the protocol For example, stock quote searchable resources have been developed which include information directed to the prices of stocks in different stock markets. A user can query a particular stock, i.e., IBM, or index, i.e., utilities, and the resource returns a set of prices satisfying the query. One problem with accessing the WWW resources is that a user must have access to a computer which is connected to the Internet. However, the majority of the world's population does not have access to a computer. Also, a user that is away from their office or home where their home or office computer is located, and is without a portable laptop computer, is not in the position to access the Internet.
There exists current state of the art audio products on the WWW for embedding audio into a Web page or transmitting full duplex phone conversation over the Internet. The WWW is formed of Web pages authored in a language referred to as hypertext mark-up language (HTML). The products digital the audio or phone conversation with a sound card. The digitized audio is encoded for compressing the audio data in order to provide real time connections over the Internet. The encoded data can be embedded into a Web page by linking the Web page to the encoded data with functions specified in HTML. After a user accesses the Internet with a computer, the user's Web browser receives the encoded audio data when the user accesses the Web page. A user can play the audio on a media player at the user's site by the user clicking on an audio link in the Web page. Alternatively, the encoded audio data can be directly transmitted across the Internet, i.e., in an Internet phone product. An Internet phone application decodes the encoded audio data and plays the transmitted data at a subscriber's phone. The above-described applications have the drawback that the encoded audio stream is a large amount of data which must be encoded and even after encoding the audio data may be slow in traversing the Internet. In addition, the current state of the art audio products require the use of a computer to access the audio services.
One current state of the art attempt to overcome the aforementioned problem of not having access to a computer has been to provide a service which recite verbatim an existing WWW page to a user. The service can be accessed by the user through establishing a voice connection to the service. This solution has the drawback that existing Web pages include text with embedded links, for example, to other addresses of resources which is difficult to read and to be understood by the user. Also, numeric and spreadsheet data which are typically represented in a two dimensional visual table are difficult to convert to speech and even if the table is converted to speech, the amount of data in the table is difficult for the user to understand and remember.
In summary, existing approaches to make information available on the world wide web accessible over an audio interie involve an automatic translation of html documents into audio. However, this process cannot be fully automated, and in general such an approach is not extensible beyond simple text-only pages. For instance, it cannot be used to represent numeric data, spreadsheets, tables and databases effectively.
SUMMARY OF THE INVASION
Briefly described, the present invention relates to a system and method for providing access to internet resources with a telephone. The process uses defined steps to represent information to be presented over audio. The system and method are used to represent different kinds of information existing on the web in a form suitable for access over a variety of audio interfaces which include touch tone and speech recognition.
Audio enabled pages are created to link particular text data, which data can be from conventional Web pages. Audio enabled pages are stored at an audio web server or on individual user machines. An authoring language audio text manipulation language, referred to as ATML, can be used for generating the audio enabled pages. An audio web server translates the audio enabled pages into audio. The audio enabled pages form an “Audio Web”, similar to conventional HTML authored pages forming the current Internet and World Wide Web. Accordingly, the system of the present invention has the advantage that it is not necessary for the user to have Internet account to use the Audio Web. A user can access audio enabled pages through the Audio Web with a conventional audio interface, such as a phone, and can create audio enabled pages with the audio interface.
The system includes at least one audio web server can be accessed by the user with a telephone. The audio web servers include call processing features for processing the user's call. Also, the audio web servers provide text to speech conversions to translate text data represented in audio enabled pages into audio. In addition, the audio web servers can include conventional speech to text converting hardware or software. The speech to text conversion is used to enable a user to access an audio enabled page with spoken input. Instead of entering “My stock” from the keypad, the user can say “My stock” and obtain an audio enabled page. Speech recognition has the advantage of making search and indexing tools easier to use. The ambiguities of speech recognition can be resoled using audio input menus listing all possible interpretations of the ambiguous word. Typically, a user's call is routed to the audio web server which is closest in proximity to the user's telephone network, i.e., within the user's local calling area.
In operation, a user calls a dedicated name, for example, 1-800-AWEB and is connected to an audio web server. Upon connecting with the audio web server, the user is queried by the audio web server with audio input means to allow the user to select data from an audio enabled page. Selection by the user results in an audio enabled page being brought into the audio web server. If the audio enabled page is located remotely from the audio web server, a protocol such as http is used to connect the audio web server to a universal resource locator (URL). The URL is a physical address in terms of the WWW where the audio enabled page is actually residing. The audio enabled page is received at the audio web server and converted into audio at the audio web server.
The main challenge in authoring the audio enabled pages is that it takes a number of audio enabled pages to represent the same information as one conventional “visual” page authored in HTML. For example, a two dimensional conventional table which may be accessed on the Internet has four columns representing different markets (NASDAQ, NYSE, AMEX and DOW) and a number of rows corresponding to different indexes (utilities, transportation . . . ). Audio access to the above table can be created by asking the user first for the column and then for the row (or vice versa). Audio access for the two dimensional table uses N×M+2 pages (one page to ask for the market selection, another for the index selection and N×M pages to store the proper values to be read in which

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for audio access to information in a wide... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for audio access to information in a wide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for audio access to information in a wide... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563760

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.