Method and system for an intelligent partitioned...

Telephonic communications – Special services – Locating using diverse technology

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S207030, C379S220010, C379S230000

Reexamination Certificate

active

06584184

ABSTRACT:

TECHNICAL FIELD
This invention relates to an intelligent partitioned communication method and system.
BACKGROUND ART
The majority of telecommunication services currently being provided are deployed in centralized systems within the public-switched telephone network (PSTN). As those skilled in the art will recognize, the PSTN comprises the complete public telephone system, including telephones, local and trunk lines, and exchanges. Telephones in a home or business are commonly connected to a serving central office, also called a switch, by a pair of copper wires called the local loop. Switches are connected to one another with multiple lines called trunks. A trunk is a circuit connecting telephone switches or switching locations. Trunks and lines both carry communications. Trunks, however, connect switching equipment together, whereas lines connect a telephone, computer terminal or other device to the PSTN. The PSTN comprises millions of miles of lines and handles voice and data communications throughout the world.
The PSTN further includes service activation and control functionality to perform two basic tasks: (1) service delivery, i.e., the provision and modification of telephone services; and (2) service assurance, i.e., maintenance of the system. The service activation and control functionality takes the form of complex hardware and software and embodies specialized services which reside on circuit switching systems or adjunct platforms located within the network. Such services include, for example, Custom Local Access Signaling Services, referred to by the acronym CLASS, and Intelligent Network (IN) services, such as, for example, Advanced Intelligent Network (AIN) services.
Class services are one of the many types of switch-based services which must be accessed by subscribers off-hook by entering appropriate activation codes. These services include, for example, Automatic Call-back (AC), Automatic Recall (AR), etc. AIN services are employed using an Advanced Intelligent Network architecture.
A representative diagram of an AIN architecture provided for use in a Public Switch Telephone Network is shown, for example, in FIG.
1
and designated generally by reference numeral
10
. Network
10
includes at least one switch or service node
12
in electrical communication with a plurality of servicing switches (central offices)
14
via Service Transfer Points (STPs)
15
and Transaction Capability Application Part (TCAP) signaling protocol or other suitable signaling protocol. Service node
12
is typically operative as the home switch or a virtual Service Switching Point (SSP) for subscribers to existing switch-based services. Thus, service node
12
is shown including a Service Control Point (SCP)
16
which contains the service logic and associated data support, as well as sufficient memory to execute customer services.
Service node
12
further includes service switching point (SSP)
18
which is a node (usually the subscriber's local switch/central office switch) that recognizes the “triggers” used when a subscriber invokes an intelligent network service and then communicates with the SCP to operate the service. SSP
18
and SCP
16
are provided in electrical communication with service node
12
and may, in some situations, be combined in a single device known as a Service Switching Control Point (SSCP) wherein the functions of the SCP and the SSP are combined. Subscribers typically use these communications services with a simple telephone (usually a Dual-Tone Multi-Frequency (DTMF) compatible communication device).
Emerging telecom deregulation coupled with technological advances have resulted in the advance of many new solutions which no longer rely on centralized communications functionality such as that described above which is hosted in the shared public switched telephone network. Personal computer (PC) based telephony, for example, now delivers some of the same voice messaging, caller identification, and call management features which were previously found only in large network systems. Residential gateways, an emerging technology, will soon also deliver some CLASS-like features in a Customer Premises Equipment (CPE) devices. Additionally, the internet is emerging as an alternative transport medium for voice and data communications. Still further, special-featured screen phones are being designed to work with network services.
All of these new technologies, however, either replicate network functionality entirely within the CPE, or rely on existing communications functionality in the network. This reliance has resulted in CPE devices which are of limited functionality and use.
A CPE device having greater functionality would have special application in performing call management services. Consider, for example, the problem of call holding as set forth in detail in co-pending patent application Ser. No. 08/998,799, the disclosure of which is hereby expressly incorporated by reference. As discussed, being placed on hold is an unpleasant and frustrating experience for most telephone callers as it constitutes wasted time. The advent of Interactive Voice Response (IVR) units and integrated call management systems by order response centers, businesses, and technical support centers, often results in callers being placed on hold for long periods of time. The pressure on these service centers to reduce costs, typically through fewer agents available to answer calls, has further exacerbated the problem. Hold times of half an hour to an hour are now fairly common.
Because most service centers provide no indication of how long a call will be held or indicate how much longer the hold will last, callers often feel left in limbo for an indefinite time. These extended held calls require the caller to stay on the line for the duration of the hold resulting in a large telephone bill. As a consequence, significant numbers of callers who are put on hold for more than a brief time period abandon their calls and hang up in resentment and frustration. This result is, of course, bad for customer relations and constitutes wasted effort. More importantly, it results in lost business for the service centers.
Furthermore, the hold state is a waste of telephone resources. It unproductively ties up the telephone of the caller as well as the telephone lines, trunks, and switching resources being used to maintain the connection between the caller and the switching system of the service center. If freed, these resources could be used productively for other calls.
To overcome some of these problems, a variety of arrangements have been proposed which alert the caller that has been placed on hold to when the hold is removed. The alerting takes the form of an audible or a visual signal generated at the telephone of the caller. The alerting arrangements enable the held caller to do something else instead of having to cradle the telephone handset to his or her ear listening for the service center to take the call off hold. Alerting arrangements help make the time spent on hold less annoying for the held caller.
U.S. Pat. No. 3,961,142 illustrates a typical alerting device. A primary disadvantage with these alerting devices is that they require all lines from the caller to the service center to remain open. Thus, the caller must stay on the line for the duration of the call which results in significant toll costs. Furthermore, the caller is not allowed to place or receive other calls.
Other proposed arrangements include automatic call-back systems. When an incoming call is not answered by an agent of a service center within a predetermined time period (e.g., three rings), an automatic call-back system answers the call and plays a pre-recorded announcement. The announcement gives the caller the option of either having the call placed in a queue to wait for an agent to pick up, or hanging up and being called back when an agent becomes available. If the caller selects the call-back option, the system either obtains the telephone number of the caller from the telephone network by means of Automatic N

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for an intelligent partitioned... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for an intelligent partitioned..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for an intelligent partitioned... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.