Fluid sprinkling – spraying – and diffusing – Including supply holder for material – Plural holders for diverse materials
Reexamination Certificate
2002-03-05
2004-10-12
Brinson, Patrick (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Including supply holder for material
Plural holders for diverse materials
C239S102200, C239S102100, C239S004000, C239S069000, C239S338000, C239S328000, C239S303000
Reexamination Certificate
active
06802460
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method and apparatus for refreshing and disinfecting air streams. More particularly, the invention relates to refreshing and disinfecting air streams flowing into or through an environment or room by dispersing a fragrant disinfectant. Still more particularly, the present invention relates to a method and apparatus for refreshing and disinfecting air streams wherein a fragrance, a disinfectant, or other functional liquid is nebulized into an air stream, and the rate of nebulization of the liquid is controlled and determined by personal preferences of a user.
Moreover, in the present context, the term “freshening” means either scenting, disinfecting, or scenting and disinfecting, such as for an air stream or a body of air.
Note that for the purpose of this disclosure the terms “nebulized” and “atomized” will be considered equivalent and interchangeable.
BACKGROUND OF THE INVENTION
Scenting and disinfecting of ambient air in human living spaces has been an endeavor since ancient times. Several natural fragrance molecules have both scenting as well as disinfecting properties. In modem times, man has invented many ways of introducing the comfort of improved ambient air in personal, housing and working environments. In recent decades, home and working environments have evolved into tighter closed air systems, which largely re-circulate stale air including airborne particles and microorganisms trapped within these closed environments. Consequently, these closed air environments serve as pockets of particle accumulation (e.g., dust and pollen) and provide a potential growth medium for pathogenic and non-pathogenic microorganisms. Humans presently spend about 90% of their time inside enclosed spaces (i.e., rooms) in homes, hotels, offices, cars, airplanes, restaurants, etc. Much attention has been paid to determining the effects of indoor air quality on the health, comfort, and productivity of the inhabitants. Concepts such as “Sick Building Syndrome” (SBS) and “Perceived Air Quality” have been developed and have become issues of concern to the scientific, technical and financial communities. It is noted that the general notion of “Indoor Air Quality” (IAQ) includes the concepts of (a) ambient air scenting, (b) combating odors and (c) disinfecting. The present invention endeavors to provide an air refreshing solution addressing these issues.
To address the problems inherent to recirculating particle laden and microbe bearing air, the air-conditioning system was recognized early as a means of introducing deodorants, insecticides, moisturizers, bactericides, etc., into an air conditioning stream and thus treating ambient air. One such air-conditioning system is disclosed in U.S. Pat. No. 3,044,276 to Kauten.
More recent developments relate to dispersing volatiles (i.e., deodorants, insecticides, moisturizers, bactericides, etc.) into the air by the use of a so-called ion wind or ion drag which causes the molecules of the volatiles to be charged and to attach to other particles or bodies in the air such as dust, microorganisms or insects, but also to carpets, furniture, people and pets. (see WO 00/38512)
The combination of antimicrobial and scenting or flavoring capability in industrial compounds has also been previously disclosed as, for example, in U.S. Pat. No. 6,110,888 to Lupo et al.
Most recently, environmental concerns have attracted attention to the quality of ambient air in general, and HVAC systems in particular. Microorganisms, such as mold spores and bacteria, develop well within an environment which is prone to condensation by providing moisture and warmth, and which offers a lot of “dead volume” or space to settle in. However, a significant number of these microorganisms become airborne during the inherent carrier function of HVAC systems. Consequently, according to the Environmental Protection Agency (EPA), a significant amount of human respiratory problems are related to indoor air pollution (EPA Document Reference Number 402-R-94-007, 1994 and many others).
The term “air quality” can be more broadly interpreted, however. In addition to considering the numbers of particles and microbes in the air, “air quality” also relates in scope to encompass a more hedonistic component of air quality such as air scenting for providing relaxing, stimulating, romantic, etc., characteristics or simply for combating bad odors. Consequently many developments relate to this field of endeavor, such as those disclosed in U.S. Pat. No. 6,267,297 B1 to Contadini et al; U.S. Pat. No. 5,178,327 to Palamand et al.; U.S. Pat. No. 5,549,247 to Rossman et al.; U.S. Pat. No. 5,431,859 to Tobin et al.; U.S. Pat. No. 342,584 to Fritz et al.; U.S. Pat. No. 5,223,182 to Steiner et al.; U.S. Pat. No. 5,186,869 to Stumpfet al.; U.S. Pat. No. 5,147,582 to Holzner et al.; U.S. Pat. No. 5,038,972 to Muderlak et al.; U.S. Pat. No. 3,677,441 to Nixon et al.; and U.S. Pat. No. 5,591,409 to Watkins.
Most of these disclosed systems rely on some method of controlled scent release by actuation of aerosol cans, by venting air over gel-containing cartridges, or by evaporating scented liquids. More recently disclosed documents teach the use of modern dispensing methods for various liquid substances, which avoid the use of propellant gases. Indeed, some aerosol propellants may negatively affect air quality because their “Volatile Organic Component” (VOC) content and impact may raise related health questions in a manner similar to problems raised with chlorofluorocarbons (CFC's), which were previously used as propellants. Methods and apparatuses that avoid the use of propellant gases include U.S. Pat. No. 5,529,005 to Gueret, U.S. Pat. No. 6,293,474 B1 to Helf et al.; U.S. Pat. No. 5,938,117 to Ivri; U.S. Pat. No. 6,196,219 B1 to Hess et al., and more recently EP 01 121 075.4, to Hess et al. These various patents disclose the use of piezo-electric actuation in various configurations to effectively expel liquids without the use of propellants. The advantage of these piezo-electric systems is the excellent rendering and dispersion of scents by expelling small volumes of unaltered liquid substance into the ambient air followed by the efficacious diffusion of the scents due to the production of a large number of extremely small liquid droplets, which dramatically reduces the amount of both fragrance and solvent needed to provide a given scenting result, when compared to the other methods mentioned above. The main problem remaining with most of the devices above, however, is that reliable priming is not achieved and that these devices do not have the ability to function properly in every position within the realm of three-dimensional movement. In addition, the prior art piezoelectric scenting devices do not reliably operate over a wide range of viscosities and surface tensions of the liquid to be expelled by the piezoelectric element. Furthermore, the prior art devices have not been able to mix nebulizable liquids from multiple separate source reservoirs.
Consequently, many desirable liquids used in the piezoelectric prior art devices require the addition of a solvent or solvents in order to be sprayed by these devices. The result of using a solvent is that, at least to some degree, there remain health and air quality issues when a solvent is used. For example, Martens et al. teach, in document WO 00/47335, that the viscosity and surface tension of a liquid to be dispensed can be controlled by adding certain solvents, thereby providing a method of improving the dispensing action of piezo-actuated systems. Although it may be difficult to avoid such solvents completely in order to adequately disperse certain liquids, it is a reasonable objective to minimize the use of solvents.
Further sophisticated techniques and devices directed to ambient air scenting and disinfecting are disclosed in other documents which teach the use of modem electronics in circuits essentially used in the methods of timing, sequencing and dosing of a dispensed medium into various ambient livi
Hess Joseph
Muller Myriam
Brinson Patrick
Griffin & Szipl, P.C.
Microflow Engineering SA
LandOfFree
Method and system for ambient air scenting and disinfecting... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for ambient air scenting and disinfecting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for ambient air scenting and disinfecting... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3294565