Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Traffic analysis or control of aircraft
Reexamination Certificate
2002-11-19
2004-09-07
Black, Thomas G. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Traffic analysis or control of aircraft
C701S121000, C701S122000, C701S301000, C342S034000, C342S036000
Reexamination Certificate
active
06789011
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to data processing and vehicle navigation. More particularly, this invention relates to methods and systems that allow one to better allocate and assign arrival/departure slot times for a plurality of aircraft into and out of a system resource, like an airport.
2. Description of the Related Art
The need for and advantages for tracking, prediction and asset allocation systems to better manage complex, multi-faceted processes have long been recognized. It has long been recognized by many industries that having a certain part or set of materials at a certain place at just the right time yields significant efficiencies. Thus, many complex methods for tracking and managing material flows based on the future position of particular assets as a function of time have been developed.
However, as applied to tracking, prediction and managing of aircraft within the aviation industry, such methods often have been fragmentary and too late in the process to effect the necessary change to provide real benefit. Additionally, these methods typically have not addressed the present and future movement of the aircraft, combined with other factors that can alter the aircraft's trajectory into/out of a system resource (e.g., airport).
Aviation regulatory authorities (e.g., various Civil Aviation Authorities, CAA, throughout the world, including the Federal Aviation Administration, FAA, within the U.S.) are responsible for matters such as the separation of in-flight aircraft. In this task, the CAAs collect and disseminate considerable data concerning the location of aircraft within the airspace system. This data includes: radar data, verbal position reports, data link position reports (ADS), etc. Further, airlines and other aircraft operators have developed their own flight following systems as required by the world's CAAs, which provide additional information concerning the position of the aircraft. Additionally, third parties have developed their own proprietary systems to track aircraft (e.g., Passur).
In the current art, various independent agencies, airlines or third parties use these data sources. There appears to have been few successful attempts by the various airlines/CAAs/airports/military operations/third parties to develop accurate methods and processes to manage and allocate capacity constrained resources (i.e., tactical slot allocation) that encompass all of the real-time factors (weather, ATC, individual pilot decisions, turbulence, capacity, demand, etc.) that can affect the trajectory of an aircraft. For example, in the current art of management of aircraft into an airport, it often happens that the arrival sequence is accomplished too early or too late in the arrival/departure process that actions taken have a negative effect on the efficient use of the aircraft/runway/airport assets.
An example of one of these elements is the ATC response to too many aircraft trying to land at an airport in a defined period of time. In the current art, the prediction of the aircraft arrival/departure slot time is not as accurate as possible since it is predicated only on the current aircraft position, speed, flight path and possibly winds. Yet, even with this limited information available, the arrival flow system rarely uses this information in real time to temporally manage the flow of aircraft into the airport. It is only as the aircraft nears the airport (within the last 100 to 150 miles) that the local ATC controller begins to manage the sequencing of the aircraft. And, even if the CAAs use this prediction information, it is only to limit the arrival flow based on distance sequencing of the flow (i.e., 20 miles nose to nose spacing) as opposed to the method of time based sequencing embodied in the present invention. Further, by waiting so late in the arrival process to sequence the aircraft, the controller has only one sequencing option—delays.
This process is analogous to the “take a ticket and wait” approach used in other industries. To assure equitable service to all customers, as the consumer approaches a crowded counter, the vendor sets up a ticket dispenser with numbered tickets. On the wall behind the counter is a device displaying “Now Serving” and the number. This “first come, first serve” process assures that no one customer waits significantly longer than any other customer.
The effect of the ATC's “take a ticket and wait” approach, as applied in a distance based manner and once the aircraft is near the destination airport or near the takeoff runway, is to add 1, 5, 10, 15 or more minutes to an aircraft's actual arrival time.
Only by incorporating all of the flights landing and departing at a particular airport, combined with the capacity of that airport and potential weather effects, all of which are encompassed in the present invention, can one more accurately predict, allocate and manage the arrival/departure slot times of all of the aircraft. In other words, the present invention views each aircraft as part of a system, and not individually as done within the current art.
For example, FAA's Collaborative Decision Making (CDM) program (a system to disseminate data) took a major step forward by providing both air traffic controllers and airlines with the same real time data. However, airline dispatchers, pilots, and ATC controllers are still acting mostly independently in the use of this data and are optimizing complex situations locally. Further, the competing goals of all of the different segments of the National Airspace System (NAS) often conflict, leading to confusion and wasted capacity.
For another example, a pilot may request a specific runway to save fuel and reduce taxi time even though the flight is early. The controller tries to accommodate the request and creates additional work, while blocking another aircraft that is already late from using the close in runway. As often as not, these aircraft are from the same airline.
Yet another example is when an ATC controller tries to sequence two aircraft within his sector for an arrival fix 400 miles down line. To do this, one aircraft is sped up and another slowed down or turned off course. Unfortunately, the fact that the original speeds and trajectories of each aircraft assured that the sequence at the corner post was not a problem was unknown to the local ATC controller.
To begin to understand how the current methods and system might be improved upon, it is first necessary to have a basic understanding of the various processes surrounding the flight of an aircraft.
FIG. 1
has been provided to indicate the various segments in a typical aircraft flight process. It begins with the filing of a flight plan by the airline/pilot with a CAA. Next, the pilot arrives at the airport, starts the engine, taxis, takes off, flies the flight plan (e.g., route of flight), lands and taxis to parking. At each stage during the movement of the aircraft on an IFR flight plan, the CAA's Air Traffic Control (ATC) system must approve any change to the trajectory of the aircraft. Further, anytime an aircraft on an IFR flight plan is moving, an ATC controller is responsible for ensuring that an adequate separation from other IFR aircraft is maintained.
During the last part of a flight, typical initial arrival/departure sequencing is accomplished on a first come, first serve basis (e.g., the aircraft closest to the airport is first, next closest is second and so on) by the enroute ATC center near the arrival airport (within approximately 100 miles of the airport), refined by the arrival/departure ATC facility (within approximately 25 miles of the arrival/departure airport), and then approved for arrival by the local ATC tower (within approximately 5 to 10 miles of the arrival/departure airport).
For example, current CAA practices for managing arrivals at arrival/departure airports involve sequencing aircraft arrivals by linearizing an airport's traffic arrival/departure aircraft flows according to very structured, three-dimensional
Baiada R. Michael
Bowlin Lonnie
Black Thomas G.
Guffey Larry J.
Mancho Ronnie
LandOfFree
Method and system for allocating aircraft arrival/departure... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for allocating aircraft arrival/departure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for allocating aircraft arrival/departure... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3186227